login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A187795
Sum of the abundant divisors of n.
16
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 18, 0, 20, 0, 0, 0, 36, 0, 0, 0, 0, 0, 30, 0, 0, 0, 0, 0, 66, 0, 0, 0, 60, 0, 42, 0, 0, 0, 0, 0, 84, 0, 0, 0, 0, 0, 72, 0, 56, 0, 0, 0, 122, 0, 0, 0, 0, 0, 66, 0, 0, 0, 70, 0, 162, 0, 0, 0, 0, 0, 78, 0, 140, 0, 0, 0, 138, 0, 0, 0, 88, 0, 138, 0, 0, 0, 0, 0, 180
OFFSET
1,12
COMMENTS
Sum of divisors d of n with sigma(d) > 2*d.
a(n) = n when n is a primitive abundant number (A091191). - Alonso del Arte, Jan 19 2013
FORMULA
From Antti Karttunen, Nov 14 2017: (Start)
a(n) = Sum_{d|n} A294937(d)*d.
a(n) = A294889(n) + (A294937(n)*n).
If A294889(n) > 0, then a(n) = A294889(n)+n, otherwise a(n) = A294930(n)*n.
a(n) + A187794(n) + A187793(n) = A000203(n).
(End)
EXAMPLE
a(12) = 12 because the divisors of 12 are 1, 2, 3, 4, 6, 12, but of those only 12 is abundant.
a(13) = 0 because the divisors of 13 are 1 and 13, neither of which is abundant.
MAPLE
A187795 := proc(n)
local a, d;
a :=0 ;
for d in numtheory[divisors](n) do
if numtheory[sigma](d) > 2* d then
a := a+d ;
end if;
end do:
return a;
end proc:
seq(A187795(n), n=1..100) ; # R. J. Mathar, Apr 27 2017
MATHEMATICA
Table[Total@ Select[Divisors@ n, DivisorSigma[1, #] > 2 # &], {n, 96}] (* Michael De Vlieger, Jul 16 2016 *)
PROG
(PARI) a(n)=sumdiv(n, d, (sigma(d, -1)>2)*d) \\ Charles R Greathouse IV, Jan 15 2013
(Python)
from sympy import divisors, divisor_sigma
def A187795(n): return sum(d for d in divisors(n, generator=True) if divisor_sigma(d) > 2*d) # Chai Wah Wu, Sep 22 2021
KEYWORD
nonn,easy
AUTHOR
Timothy L. Tiffin, Jan 06 2013
STATUS
approved