login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A187797
Numbers having at least two different ordered partitions p+q and (p+2)+(q-2) where p, q, p+2 and q-2 are all prime.
9
10, 16, 18, 22, 24, 30, 34, 36, 42, 46, 48, 54, 60, 64, 66, 72, 76, 78, 84, 90, 102, 106, 108, 112, 114, 120, 126, 132, 138, 142, 144, 150, 154, 156, 162, 168, 174, 180, 184, 186, 192, 196, 198, 202, 204, 210, 216, 222, 228, 232, 234, 240, 244, 246, 252, 258, 264, 270, 274, 276, 282, 286
OFFSET
1,1
COMMENTS
Numbers k with at least one pair of externally tangent circles with radius sqrt(2) and center (p,q) where p and q are prime, p + q = k and p <= q. - Wesley Ivan Hurt, Aug 11 2020
EXAMPLE
For n=10, the partition solutions are 3+7 and 5+5, giving p=3, q=7, p+2=5, q-2=5.
MAPLE
isA187797 := proc(n)
local i, p, q ;
for i from 1 do
p := ithprime(i) ;
q := n-p ;
if q <= p+2 then
return false;
end if;
if isprime(q) then
if isprime(p+2) and isprime(q-2) then
return true;
end if;
end if;
end do:
return false;
end proc:
for n from 4 to 600 do
if isA187797(n) then
printf("%d, ", n);
end if;
end do: # R. J. Mathar, Oct 03 2013
MATHEMATICA
Table[If[Sum[(PrimePi[i] - PrimePi[i - 1]) (PrimePi[2 n - i] - PrimePi[2 n - i - 1]) (PrimePi[i + 2] - PrimePi[i + 1]) (PrimePi[2 n - i - 2] - PrimePi[2 n - i - 3]), {i, n - 2}] > 0, 2 n, {}], {n, 100}] // Flatten (* Wesley Ivan Hurt, Apr 13 2020 *)
CROSSREFS
Sequence in context: A103208 A323196 A352240 * A352297 A192221 A106695
KEYWORD
nonn
AUTHOR
Bob Gilson, Aug 30 2013
STATUS
approved