login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A187800
Number T(n,k,r,u) of dissections of an n X k X r rectangular cuboid on a unit cubic grid into integer-sided cubes containing u nodes that are unconnected to any of their neighbors; irregular triangle T(n,k,r,u), n >= k >= r >= 1, u >= 0 read by rows.
2
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 4, 1, 8, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 3, 1, 1, 1, 6, 4, 1, 12, 16, 0, 0, 0, 0, 0, 2, 1, 1, 9, 16, 8, 1, 1, 18, 64, 64, 16, 0, 0, 0, 4, 1, 27, 193, 544, 707, 454, 142, 20, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
OFFSET
1,9
COMMENTS
Row lengths are specified in A228726.
LINKS
Christopher Hunt Gribble, Rows 1..34 flattened
Christopher Hunt Gribble, C++ program
EXAMPLE
T(4,3,2,2) = 4 because the 4 X 3 X 2 rectangular cuboid can be dissected in 4 distinct ways in which there are 2 nodes unconnected to any of their neighbors. The dissections and isolated nodes can be illustrated by expanding into 2 dimensions:
._______. ._______. ._______.
| | | | . | . | | | |
|___|___| |___|___| |___|___|
|_|_|_|_| |_|_|_|_| |_|_|_|_|
._______. ._______. ._______.
| |_|_| | . |_|_| | |_|_|
|___| | |___| . | |___| |
|_|_|___| |_|_|___| |_|_|___|
._______. ._______. ._______.
|_|_| | |_|_| . | |_|_| |
| |___| | . |___| | |___|
|___|_|_| |___|_|_| |___|_|_|
._______. ._______. ._______.
|_|_|_|_| |_|_|_|_| |_|_|_|_|
| | | | . | . | | | |
|___|___| |___|___| |___|___|
.
The irregular triangle begins:
u 0 1 2 3 4 5 6 7 8 9 10 11 12 ...
n k r
1,1,1 1
2,1,1 1
2,2,1 1
2,2,2 1 1
3,1,1 1
3,2,1 1
3,2,2 1 2
3,3,1 1
3,3,2 1 4
3,3,3 1 8 0 0 0 0 0 0 1
4,1,1 1
4,2,1 1
4,2,2 1 3 1
4,3,1 1
4,3,2 1 6 4
4,3,3 1 12 16 0 0 0 0 0 2
4,4,1 1
4,4,2 1 9 16 8 1
4,4,3 1 18 64 64 16 0 0 0 4
4,4,4 1 27 193 544 707 454 142 20 9 0 0 0 0 ...
CROSSREFS
Row sums = A228267(n,k,r).
Cf. A225777.
Sequence in context: A375023 A021477 A124939 * A340189 A323873 A365582
KEYWORD
nonn,tabf
AUTHOR
STATUS
approved