login
A187800
Number T(n,k,r,u) of dissections of an n X k X r rectangular cuboid on a unit cubic grid into integer-sided cubes containing u nodes that are unconnected to any of their neighbors; irregular triangle T(n,k,r,u), n >= k >= r >= 1, u >= 0 read by rows.
2
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 4, 1, 8, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 3, 1, 1, 1, 6, 4, 1, 12, 16, 0, 0, 0, 0, 0, 2, 1, 1, 9, 16, 8, 1, 1, 18, 64, 64, 16, 0, 0, 0, 4, 1, 27, 193, 544, 707, 454, 142, 20, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
OFFSET
1,9
COMMENTS
Row lengths are specified in A228726.
LINKS
Christopher Hunt Gribble, Rows 1..34 flattened
Christopher Hunt Gribble, C++ program
EXAMPLE
T(4,3,2,2) = 4 because the 4 X 3 X 2 rectangular cuboid can be dissected in 4 distinct ways in which there are 2 nodes unconnected to any of their neighbors. The dissections and isolated nodes can be illustrated by expanding into 2 dimensions:
._______. ._______. ._______.
| | | | . | . | | | |
|___|___| |___|___| |___|___|
|_|_|_|_| |_|_|_|_| |_|_|_|_|
._______. ._______. ._______.
| |_|_| | . |_|_| | |_|_|
|___| | |___| . | |___| |
|_|_|___| |_|_|___| |_|_|___|
._______. ._______. ._______.
|_|_| | |_|_| . | |_|_| |
| |___| | . |___| | |___|
|___|_|_| |___|_|_| |___|_|_|
._______. ._______. ._______.
|_|_|_|_| |_|_|_|_| |_|_|_|_|
| | | | . | . | | | |
|___|___| |___|___| |___|___|
.
The irregular triangle begins:
u 0 1 2 3 4 5 6 7 8 9 10 11 12 ...
n k r
1,1,1 1
2,1,1 1
2,2,1 1
2,2,2 1 1
3,1,1 1
3,2,1 1
3,2,2 1 2
3,3,1 1
3,3,2 1 4
3,3,3 1 8 0 0 0 0 0 0 1
4,1,1 1
4,2,1 1
4,2,2 1 3 1
4,3,1 1
4,3,2 1 6 4
4,3,3 1 12 16 0 0 0 0 0 2
4,4,1 1
4,4,2 1 9 16 8 1
4,4,3 1 18 64 64 16 0 0 0 4
4,4,4 1 27 193 544 707 454 142 20 9 0 0 0 0 ...
CROSSREFS
Row sums = A228267(n,k,r).
Cf. A225777.
Sequence in context: A375023 A021477 A124939 * A340189 A323873 A365582
KEYWORD
nonn,tabf
AUTHOR
STATUS
approved