OFFSET
0,3
COMMENTS
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..140
FORMULA
a(n) ~ c * d^n * (n!)^3 / sqrt(n), where d = 2.426663845780394275167988381..., c = 0.504146101604802096078745... . - Vaclav Kotesovec, Nov 03 2014
EXAMPLE
E.g.f.: A(x) = 1 + x + 15*x^2/2! + 829*x^3/3! + 113487*x^4/4! +...
where
A(x) = 1 + (1-exp(-x)) + (1-exp(-2*1*x))*(1-exp(-2*2*x)) + (1-exp(-3*1*x))*(1-exp(-3*2*x))*(1-exp(-3*3*x)) + (1-exp(-4*1*x))*(1-exp(-4*2*x))*(1-exp(-4*3*x))*(1-exp(-4*4*x)) +...
PROG
(PARI) {a(n)=n!*polcoeff(sum(m=0, n, prod(k=1, m, (1-exp(-m*k*x+x*O(x^n)))) ), n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 06 2013
STATUS
approved