login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A294937
Characteristic function for abundant numbers (A005101): a(n) = 1 if A001065(n) > n, 0 otherwise.
18
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1
OFFSET
1
FORMULA
a(n) = 1 if A033880(n) > 0, 0 otherwise.
a(n) = 1 - A294935(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A302991. - Amiram Eldar, Jul 25 2022
MATHEMATICA
a[n_] := If[DivisorSigma[1, n] > 2*n, 1, 0]; Array[a, 100] (* Amiram Eldar, Jul 25 2022 *)
PROG
(PARI) a(n) = sigma(n) > 2*n; \\ Michel Marcus, Jul 25 2022
CROSSREFS
Cf. A005101 (positions of ones), A263837 (of zeros).
Sequence in context: A294930 A353472 A359475 * A363131 A355447 A045701
KEYWORD
nonn
AUTHOR
Antti Karttunen, Nov 12 2017
STATUS
approved