login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A091191 Primitive abundant numbers: abundant numbers (A005101) having no abundant proper divisor. 44
12, 18, 20, 30, 42, 56, 66, 70, 78, 88, 102, 104, 114, 138, 174, 186, 196, 222, 246, 258, 272, 282, 304, 308, 318, 354, 364, 366, 368, 402, 426, 438, 464, 474, 476, 498, 532, 534, 550, 572, 582, 606, 618, 642, 644, 650, 654, 678, 748, 762, 786, 812, 822 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
A080224(a(n)) = 1.
This is a supersequence of the primitive abundant number sequence A071395, since many of these numbers will be positive integer multiples of the perfect numbers (A000396). - Timothy L. Tiffin, Jul 15 2016
If the terms of A071395 are removed from this sequence, then the resulting sequence will be A275082. - Timothy L. Tiffin, Jul 16 2016
LINKS
P. Erdős, On the density of the abundant numbers, J. London Math. Soc. 9 (1934), pp. 278-282.
Eric Weisstein's World of Mathematics, Abundant Number
FORMULA
Erdős shows that a(n) >> n log^2 n. - Charles R Greathouse IV, Dec 05 2012
EXAMPLE
12 is a term since 1, 2, 3, 4, and 6 (the proper divisors of 12) are either deficient or perfect numbers, and thus not abundant. - Timothy L. Tiffin, Jul 15 2016
MAPLE
isA005101 := proc(n) is(numtheory[sigma](n) > 2*n ); end proc:
isA091191 := proc(n) local d; if isA005101(n) then for d in numtheory[divisors](n) minus {1, n} do if isA005101(d) then return false; end if; end do: return true; else false; end if; end proc:
for n from 1 to 200 do if isA091191(n) then printf("%d\n", n) ; end if; end do: # R. J. Mathar, Mar 28 2011
MATHEMATICA
t = {}; n = 1; While[Length[t] < 100, n++; If[DivisorSigma[1, n] > 2*n && Intersection[t, Divisors[n]] == {}, AppendTo[t, n]]]; t (* T. D. Noe, Mar 28 2011 *)
Select[Range@ 840, DivisorSigma[1, #] > 2 # && Times @@ Boole@ Map[DivisorSigma[1, #] <= 2 # &, Most@ Divisors@ #] == 1 &] (* Michael De Vlieger, Jul 16 2016 *)
PROG
(PARI) is(n)=sumdiv(n, d, sigma(d, -1)>2)==1 \\ Charles R Greathouse IV, Dec 05 2012
(Haskell)
a091191 n = a091191_list !! (n-1)
a091191_list = filter f [1..] where
f x = sum pdivs > x && all (<= 0) (map (\d -> a000203 d - 2 * d) pdivs)
where pdivs = a027751_row x
-- Reinhard Zumkeller, Jan 31 2014
CROSSREFS
Cf. A006038 (odd terms), A005101 (abundant numbers), A091192.
Cf. A027751, A071395 (subsequence), supersequence of A275082.
Cf. A294930 (characteristic function), A294890.
Sequence in context: A357695 A192819 A181487 * A357696 A259980 A257719
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Dec 27 2003
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 27 10:59 EST 2024. Contains 370378 sequences. (Running on oeis4.)