login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A091188 G.f. A(x) satisfies both A(-x)*A(x) = A(x^2) and xA(x)^2 = B(xA(x^2)) where B(x) = x*(1+x)/(1-x). 3
1, 1, 1, 2, 2, 4, 5, 10, 12, 23, 31, 58, 79, 145, 207, 374, 540, 964, 1427, 2522, 3775, 6626, 10050, 17532, 26811, 46561, 71795, 124188, 192661, 332228, 518303, 891340, 1396902, 2396912, 3771822, 6459202, 10199912, 17437727, 27622807, 47152952 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

This is a special case of sequences with g.f.s that satisfy the more general functional equation xA(x)^m = B(xA(x^m)) originated by Michael Somos; some other examples are A085748, A091190 and A091200.

LINKS

Table of n, a(n) for n=0..39.

FORMULA

Given g.f. A(x), then B(x) = x * A(x^2) satisfies 0 = f(B(x), B(x^2)) were f(u, v) = u^2 * (1 - v) - v * (1 + v). - Michael Somos, Aug 02 2011

EXAMPLE

1 + x + x^2 + 2*x^3 + 2*x^4 + 4*x^5 + 5*x^6 + 10*x^7 + 12*x^8 + 23*x^9 + ...

q + q^3 + q^5 + 2*q^7 + 2*q^9 + 4*q^11 + 5*q^13 + 10*q^15 + 12*q^17 + ...

PROG

(PARI) {a(n) = local(A, m); if( n<0, 0, m=1; A = 1 + O(x); while( m<=n, m*=2; A = x * subst(A, x, x^2); A = (A *(1 + A) /(1 - A) / x)^(1/2)); polcoeff(A, n))}

CROSSREFS

Cf. A085748, A091190, A091200, A092869.

Sequence in context: A135586 A168542 A116646 * A147678 A195865 A222006

Adjacent sequences:  A091185 A091186 A091187 * A091189 A091190 A091191

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Feb 22 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified January 23 01:55 EST 2018. Contains 298093 sequences.