login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A091187 Triangle read by rows: T(n,k) is the number of ordered trees with n edges and k branches. 3
1, 1, 1, 1, 2, 2, 1, 3, 6, 4, 1, 4, 12, 16, 9, 1, 5, 20, 40, 45, 21, 1, 6, 30, 80, 135, 126, 51, 1, 7, 42, 140, 315, 441, 357, 127, 1, 8, 56, 224, 630, 1176, 1428, 1016, 323, 1, 9, 72, 336, 1134, 2646, 4284, 4572, 2907, 835, 1, 10, 90, 480, 1890, 5292, 10710, 15240, 14535, 8350, 2188 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
1,5
COMMENTS
Row sums are the Catalan numbers A000108. Diagonal entries are the Motzkin numbers A001006.
Equals binomial transform of an infinite lower triangular matrix with A001006 as the main diagonal and the rest zeros. [Gary W. Adamson, Dec 31 2008] [Corrected by Paul Barry, Mar 06 2011]
Reversal of A091869. Diagonal sums are A026418(n+2). [Paul Barry, Mar 06 2011]
LINKS
Michael De Vlieger, Table of n, a(n) for n = 1..11325 (rows 1..150, flattened)
J.-L. Baril, S. Kirgizov, The pure descent statistic on permutations, Preprint, 2016.
J. Riordan, Enumeration of plane trees by branches and endpoints, J. Combinat. Theory, Ser A, 19, 214-222, 1975.
Lin Yang and Shengliang Yang, Protected Branches in Ordered Trees, J. Math. Study (2023) Vol. 56, No. 1, 1-17.
FORMULA
T(n,k) = M(k-1)*binomial(n-1, k-1), where M(k) = A001006(k) = (Sum_{q=0..ceiling((k+1)/2)} binomial(k+1, q)*binomial(k+1-q, q-1))/(k+1) is a Motzkin number.
G.f.: G = G(t,z) satisfies t*z*G^2 -(1 - z + t*z)*G + 1- z + t*z = 0.
From Paul Barry, Mar 06 2011: (Start)
G.f.: 1/(1-x-xy-x^2y^2/(1-x-xy-x^2y^2/(1-x-xy-x^2y^2/(1-... (continued fraction).
G.f.: (1-x(1+y)-sqrt(1-2x(1+y)+x^2(1+2y-3y^2)))/(2x^2*y^2).
E.g.f.: exp(x(1+y))*Bessel_I(1,2*x*y)/(x*y). (End)
EXAMPLE
Triangle begins:
1;
1, 1;
1, 2, 2;
1, 3, 6, 4;
1, 4, 12, 16, 9;
1, 5, 20, 40, 45, 21;
1, 6, 30, 80, 135, 126, 51;
1, 7, 42, 140, 315, 441, 357, 127;
MAPLE
M := n->sum(binomial(n+1, q)*binomial(n+1-q, q-1), q=0..ceil((n+1)/2))/(n+1): T := (n, k)->binomial(n-1, k-1)*M(k-1): seq(seq(T(n, k), k=1..n), n=1..13);
MATHEMATICA
(* m = MotzkinNumber *) m[0] = 1; m[n_] := m[n] = m[n - 1] + Sum[m[k]*m[n - 2 - k], {k, 0, n - 2}]; t[n_, k_] := m[k - 1]*Binomial[n - 1, k - 1]; Table[t[n, k], {n, 1, 11}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 10 2013 *)
CROSSREFS
Cf. A007476. [Gary W. Adamson, Dec 31 2008]
Sequence in context: A293472 A046726 A082137 * A318607 A340106 A259824
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Feb 23 2004
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 20 12:25 EDT 2024. Contains 371844 sequences. (Running on oeis4.)