login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A091190
G.f. A(x) satisfies x*A(x)^3 = B(x*A(x^3)) where B(x) = x/(1 - 3*x).
5
1, 1, 2, 5, 13, 35, 97, 273, 778, 2240, 6499, 18976, 55703, 164243, 486130, 1443620, 4299365, 12836825, 38413933, 115184282, 346005073, 1041072108, 3137060983, 9465689545, 28596915843, 86492865522, 261876842801, 793661873276
OFFSET
0,3
COMMENTS
More generally, given A(x) satisfies x*A(x)^p = B(x*A(x^p)) where B(x) = x/(1-p*x), then it appears that A(x) is an integer series only when p is prime. This is a special case of sequences with g.f.s that satisfy the more general functional equation x*A(x)^m = B(x*A(x^m)) studied by Michael Somos; some other examples are A085748, A091188 and A091200.
LINKS
FORMULA
From Paul D. Hanna, Mar 09 2024: (Start)
G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
(1) A(x)^3 = A(x^3) / (1 - 3*x*A(x^3)).
(2) A(x) = x/Series_Reversion(D(x)) where D(x) = x*A(D(x)) is the g.f. of A370441.
(End)
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 13*x^4 + 35*x^5 + 97*x^6 + 273*x^7 + 778*x^8 + 2240*x^9 + 6499*x^10 + 18976*x^11 + 55703*x^12 + ...
where A(x)^3 = A(x^3) / (1 - 3*x*A(x^3)).
RELATED SERIES.
A(x)^3 = 1 + 3*x + 9*x^2 + 28*x^3 + 87*x^4 + 270*x^5 + 839*x^6 + 2607*x^7 + 8100*x^8 + 25169*x^9 + 78207*x^10 + 243009*x^11 + 755095*x^12 + ...
Also, D(x) = x*A(D(x)) is the g.f. of A370441, which begins
D(x) = x + x^2 + 3*x^3 + 12*x^4 + 54*x^5 + 261*x^6 + 1324*x^7 + 6952*x^8 + 37461*x^9 + ... + A370441(n)*x^n + ...
such that D(x)^3 = D( x^3 + 3*D(x)^4 ).
MATHEMATICA
m = 28; B[x_] = x/(1 - 3 x); A[_] = 1;
Do[A[x_] = (B[x A[x^3]]/x)^(1/3) + O[x]^m // Normal, {m}];
CoefficientList[A[x], x] (* Jean-François Alcover, Oct 29 2019 *)
PROG
(PARI) {a(n) = my(A, p=3, m=1); if(n<0, 0, m=1; A=1+O(x); while(m<=n, m*=p; A = x*subst(A, x, x^p); A = (A/(1-p*A)/x)^(1/p)); polcoeff(A, n))}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 22 2004
EXTENSIONS
Corrected by T. D. Noe, Oct 25 2006
STATUS
approved