login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A085748
G.f.: 1/(1-G001190), where G001190 = x + x^2 + x^3 + 2x^4 + 3x^5 + ... is the g.f. for the Wedderburn-Etherington numbers A001190.
5
1, 1, 2, 4, 9, 20, 46, 106, 248, 582, 1376, 3264, 7777, 18581, 44526, 106936, 257379, 620577, 1498788, 3625026, 8779271, 21287278, 51671864, 125550018, 305333281, 743179460, 1810290446, 4412783988, 10763786019, 26271534125, 64158771500, 156769178340
OFFSET
0,3
COMMENTS
a(n) is also the number of interpretations of c*x^n (or number of ways to insert parentheses) when multiplication is commutative but not associative. E.g. a(2) = 2: c(x^2) and (c.x)x. a(3)=4: c(x.x^2), (c.x)(x^2), (c.x^2)x, and ((c.x)x)x. - Paul Zimmermann, Dec 04 2009
LINKS
M. R. Bremner, L. A. Peresi and J. Sanchez-Ortega, Malcev dialgebras, arXiv preprint arXiv:1108.0586 [math.RA], 2011.
Chloe E. Shiff and Noah A. Rosenberg, Enumeration of rooted binary perfect phylogenies, arXiv:2410.14915 [q-bio.PE], 2024. See pp. 9, 17.
FORMULA
G.f. A(x) satisfies: x * A(x)^2 = B(x * A(x^2)) where B(x) = x / (1 - 2*x). - Michael Somos, Feb 17 2004
EXAMPLE
G.f. = 1 + x + 2*x^2 + 4*x^3 + 9*x^4 + 20*x^5 + 46*x^6 + 106*x^7 + 248*x^8 + ...
MAPLE
b:= proc(n) option remember; `if`(n<2, n, `if`(n::odd, 0,
(t-> t*(1-t)/2)(b(n/2)))+add(b(i)*b(n-i), i=1..n/2))
end:
a:= proc(n) option remember; `if`(n<1, 1,
add(a(n-i)*b(i), i=1..n))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Sep 07 2017
MATHEMATICA
b[n_] := b[n] = If[n < 2, n, If[OddQ[n], 0, Function[t, t*(1 - t)/2][ b[n/2] ] ] + Sum[b[i]*b[n - i], {i, 1, n/2}] ];
a[n_] := a[n] = If[n < 1, 1, Sum[a[n - i]*b[i], {i, 1, n}]];
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Nov 06 2017, after Alois P. Heinz *)
PROG
(PARI) {a(n) = local(A, m); if( n<0, 0, A = 1 + O(x); m=1; while( m<=n, m*=2; A = sqrt( subst( x / (1 - 2*x), x, x * subst(A, x, x^2)) / x)); polcoeff(A, n))}; /* Michael Somos, Feb 17 2004 */
CROSSREFS
Cf. A001190.
Sequence in context: A000968 A005908 A206119 * A317097 A252354 A052806
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 07 2003
STATUS
approved