

A091200


G.f. A(x) satisfies xA(x)^5 = B(xA(x^5)) where B(x) = x/(15x).


2



1, 1, 3, 11, 44, 185, 802, 3553, 15994, 72886, 335387, 1555487, 7261310, 34083382, 160730900, 761039051, 3616102911, 17235223345, 82372594183, 394648349447, 1894921311499, 9116598414141, 43939539520427, 212124129983285
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

More generally, given A(x) satisfies xA(x)^p = B(xA(x^p)) where B(x) = x/(1p*x), then it appears that A(x) is an integer series only when p is prime. This is a special case of sequences with g.f.s that satisfy the more general functional equation xA(x)^m = B(xA(x^m)) originated by Michael Somos; some other examples are A085748, A091188 and A091190.


LINKS

Table of n, a(n) for n=0..23.


PROG

(PARI) {a(n)=local(A, m); p=5; if(n<0, 0, m=1; A=1+O(x); while(m<=n, m*=p; A=x*subst(A, x, x^p); A=(A/(1p*A)/x)^(1/p)); polcoeff(A, n))}


CROSSREFS

Cf. A085748, A091188, A091190.
Sequence in context: A026748 A113174 A132840 * A271931 A151105 A127632
Adjacent sequences: A091197 A091198 A091199 * A091201 A091202 A091203


KEYWORD

nonn


AUTHOR

Paul D. Hanna, Feb 23 2004


STATUS

approved



