

A091201


Number of orbits of length n under the map whose periodic points are counted by A061688.


0




OFFSET

1,2


COMMENTS

Old name was: A061688 appears to count the periodic points for a certain map. If so, then this is the sequence of the numbers of orbits of length n under that map.


LINKS

Table of n, a(n) for n=1..6.
Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
J.M. Sixdeniers, K. A. Penson and A. I. Solomon, Extended Bell and Stirling Numbers From Hypergeometric Exponentiation, J. Integer Seqs. Vol. 4 (2001), #01.1.4.
Thomas Ward, Exactly realizable sequences. [local copy].


FORMULA

If b(n) is the (n+1)th term of A061688, then a(n) = (1/n)*Sum_{dn}mu(d)b(n/d).


EXAMPLE

b(1)=1,b(3)=48844, so a(3)=(1/3)(488441)=16281.


CROSSREFS

Cf. A061688.
Sequence in context: A159384 A230689 A248002 * A121913 A016877 A227659
Adjacent sequences: A091198 A091199 A091200 * A091202 A091203 A091204


KEYWORD

nonn


AUTHOR

Thomas Ward, Feb 24 2004


EXTENSIONS

Name clarified by Michel Marcus, May 14 2015


STATUS

approved



