This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A127632 Expansion of c(x*c(x)), where c(x) is the g.f. for A000108. 9
 1, 1, 3, 11, 44, 185, 804, 3579, 16229, 74690, 347984, 1638169, 7780876, 37245028, 179503340, 870374211, 4243141332, 20786340271, 102275718924, 505235129250, 2504876652190, 12459922302900, 62167152967680, 311040862133625 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Old name was: Expansion of 1/(1 - x*c(x) * c(x*c(x))), where c(x) is the g.f. of A000108. Row sums of number triangle A127631. Hankel transform appears to be A075845. Catalan transform of Catalan numbers. - Philippe Deléham, Jun 20 2007 Number of functions f:[1,n] -> [1,n] satisfying the condition that, for all i=0 by putting the sequence of Catalan numbers as the first column of the array and completing the remaining columns using the recurrence T(n,k) = T(n,k-1) + T(n-1,k). This sequence will then be the leading diagonal of the array. - Peter Bala, May 13 2017 REFERENCES Tian-Xiao He, LW Shapiro, Row sums and alternating sums of Riordan arrays, Linear Algebra and its Applications, Volume 507, 15 October 2016, Pages 77-95. LINKS Alois P. Heinz, Table of n, a(n) for n = 0..1000 David Callan, A combinatorial interpretation of the Catalan transform of the Catalan numbers, arXiv:1111.0996 [math.CO], 2011. S. Csar, R. Sengupta, W. Suksompong, On a Subposet of the Tamari Lattice, arXiv preprint arXiv:1108.5690 [math.CO], 2011. J. M. Pallo, Right-arm rotation distance between binary trees, Inform. Process. Lett., 87(4):173-177, 2003. Y. Sun, Z. Wang, Consecutive pattern avoidances in non-crossing trees, Graph. Combinat. 26 (2010) 815-832, table 1, {ud} S. Yakoubov, Pattern Avoidance in Extensions of Comb-Like Posets, arXiv preprint arXiv:1310.2979 [math.CO], 2013. FORMULA a(n) = A127714(n+1,2n+1). G.f. A(x) satisfies 0 = 1 - A(x) + A(x)^2 * x * c(x) where c(x) is the g.f. of A000108. G.f.: 2/(1 + sqrt( 2 * sqrt(1 -4*x) - 1)). - Michael Somos, May 04 2007 a(n) = Sum_{k, 0<=k<=n}A106566(n,k)*A000108(k). - Philippe Deléham, Jun 20 2007 a(n) = sum(m=1..n, m*sum(k=m..n, binomial(2*k-m-1,k-1)*binomial(2*n-k-1,n-1)))/n, a(0)=1. - Vladimir Kruchinin, Oct 08 2011 MAPLE a:= proc(n) option remember; `if`(n<3, [1, 1, 3][n+1],       ((8*(4*n-11))*(4*n-5)*(4*n-9)*(2*n-5)*a(n-3)       -(8*(4*n-5))*(n-1)*(22*n^2-94*n+99)*a(n-2)       +8*n*(n-1)*(20*n^2-67*n+48)*a(n-1))/       ((3*(4*n-9))*(n+1)*n*(n-1)))     end: seq(a(n), n=0..30);  # Alois P. Heinz, Apr 06 2015 MATHEMATICA a[n_] := Sum[m*(2*n-m-1)!*HypergeometricPFQ[{m/2+1/2, m/2, m-n}, {m, m-2*n+1}, 4]/(n!*(n-m)!), {m, 1, n}]; a[0]=1; Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Jul 24 2012, after Vladimir Kruchinin *) PROG (PARI) {a(n)= if(n<1, n==0, polcoeff( serreverse( x*(1-x)^3*(1-x^3)/(1-x^2)^4 +x*O(x^n) ), n))} /* Michael Somos, May 04 2007 */ (PARI) {a(n)= local(A); if(n<1, n==0, A= serreverse( x-x^2 +x*O(x^n) ); polcoeff( 1/(1 - subst(A, x, A)), n))} /* Michael Somos, May 04 2007 */ (Maxima) a(n):=if n=0 then 1 else sum(m*sum(binomial(2*k-m-1, k-1)*binomial(2*n-k-1, n-1), k, m, n), m, 1, n)/n; \\ Vladimir Kruchinin, Oct 08 2011 CROSSREFS Cf. A127714, A075845, A000108, A009766. Sequence in context: A091200 A271931 A151105 * A061706 A167012 A167013 Adjacent sequences:  A127629 A127630 A127631 * A127633 A127634 A127635 KEYWORD easy,nonn AUTHOR Paul Barry, Jan 20 2007, Jan 25 2007 EXTENSIONS Better name from David Callan, Jun 03 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.