OFFSET
0,4
COMMENTS
Here, the binary trees are sized by total number of nodes.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000
FORMULA
O.g.f.: Product_{i>=1} 1/(1 - x^i)^A126120(i-1).
a(n) ~ c * 2^n / n^(3/2), where c = 1.165663931402962361339366557... if n is even, c = 1.490999501305559555120304528... if n is odd. - Vaclav Kotesovec, Aug 31 2014
EXAMPLE
a(6) = 5: There is one forest with 6 trees, one forest with 4 trees and 3 forests with 2 trees, namely
1)...o..o..o..o..o..o...............
....................................
2)...o..o..o....o...................
.............../.\..................
..............o...o.................
....................................
3)...o........o.....................
..../.\....../.\....................
...o...o....o...o...................
....................................
4).....o....o.....5)......o.....o...
....../.\................/.\........
.....o...o..............o...o.......
..../.\..................../.\......
...o...o..................o...o.....
MAPLE
b:= proc(n) option remember; `if`(irem(n, 2)=0, 0,
`if`(n<2, n, add(b(i)*b(n-1-i), i=1..n-2)))
end:
g:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(g(n-i*j, i-2)*binomial(b(i)+j-1, j), j=0..n/i)))
end:
a:= n-> g(n, iquo(n-1, 2)*2+1):
seq(a(n), n=0..50); # Alois P. Heinz, Feb 26 2013
MATHEMATICA
nn=40; a=Drop[CoefficientList[Series[t=(1-(1-4x^2)^(1/2))/(2x), {x, 0, nn}], x], 1]; CoefficientList[Series[Product[1/(1-x^i)^a[[i]], {i, 1, nn-1}], {x, 0, nn}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Geoffrey Critzer, Feb 23 2013
STATUS
approved