login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A305840
Product_{n>=1} (1 + x^n)^a(n) = g.f. of A005169 (fountains of coins).
2
1, 1, 1, 2, 2, 4, 5, 10, 13, 23, 35, 59, 93, 154, 248, 413, 671, 1111, 1827, 3036, 5013, 8348, 13859, 23122, 38534, 64434, 107715, 180509, 302565, 508032, 853507, 1435828, 2416941, 4072943, 6868062, 11591918, 19577555, 33090308, 55964327, 94715248, 160391045
OFFSET
1,4
COMMENTS
Inverse weigh transform of A005169.
LINKS
N. J. A. Sloane, Transforms
Eric Weisstein's World of Mathematics, Rogers-Ramanujan Continued Fraction
FORMULA
Product_{n>=1} (1 + x^n)^a(n) = 1/(1 - x/(1 - x^2/(1 - x^3/(1 - x^4/(1 - x^5/(1 - ...)))))).
a(n) ~ 1 / (n * A347901^n). - Vaclav Kotesovec, Sep 18 2021
EXAMPLE
(1 + x) * (1 + x^2) * (1 + x^3) * (1 + x^4)^2 * (1 + x^5)^2 * ... * (1 + x^n)^a(n) * ... = 1/(1 - x/(1 - x^2/(1 - x^3/(1 - x^4/(1 - x^5/(1 - ...)))))).
MATHEMATICA
nn = 39; f[x_] := Product[(1 + x^n)^a[n], {n, 1, nn}]; sol = SolveAlways[0 == Series[f[x] - 1/(1 + ContinuedFractionK[-x^k, 1, {k, 1, nn}]), {x, 0, nn}], x]; Table[a[n], {n, 1, nn}] /. sol // Flatten
CROSSREFS
Sequence in context: A195865 A222006 A127712 * A178113 A032090 A000014
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jun 11 2018
STATUS
approved