login
A226999
Inverse Euler transform of A005169 (fountains of coins).
5
1, 0, 1, 1, 2, 3, 5, 8, 13, 21, 35, 55, 93, 149, 248, 403, 671, 1098, 1827, 3013, 5013, 8313, 13859, 23063, 38534, 64341, 107715, 180355, 302565, 507784, 853507, 1435415, 2416941, 4072272, 6868062, 11590807, 19577555, 33088481, 55964327, 94712212
OFFSET
1,5
COMMENTS
If G005169(x) = Sum_{i>=0} A005169(n)*x^n is the generating function of A005169, the a(n) are defined through G005169(x) = Product_{n>=1} 1/(1-x^n)^a(n), the inverse Euler transform of A005169.
REFERENCES
S. R. Finch, Mathematical Constants, Cambridge, 2003, p. 381.
LINKS
R. K. Guy, Letter to N. J. A. Sloane, Sep 25 1986.
R. K. Guy, The strong law of small numbers. Amer. Math. Monthly 95 (1988), no. 8, 697-712.
R. K. Guy, The strong law of small numbers. Amer. Math. Monthly 95 (1988), no. 8, 697-712. [Annotated scanned copy]
FORMULA
a(n) ~ 1 / (n * r^n), where r = A347901 = 0.57614876914275660229786857371993878235472466311897446868515653431946822937499... - Vaclav Kotesovec, Oct 09 2019
MATHEMATICA
max = 100;
A005169 = Series[1 - Fold[Function[1 - x^#2/#1], 1, Range[max, 0, -1]], {x, 0, max}] // CoefficientList[#, x]&;
mob[m_, n_] := If[Mod[m, n] == 0, MoebiusMu[m/n], 0];
EULERi[b_] := Module[{a, c, i, d}, c = {}; For[i = 1, i <= Length[b], i++, c = Append[c, i*b[[i]] - Sum[c[[d]]*b[[i - d]], {d, 1, i - 1}]]]; a = {}; For[i = 1, i <= Length[b], i++, a = Append[a, (1/i)*Sum[mob[i, d]*c[[d]], {d, 1, i}]]]; Return[a]];
EULERi[A005169 // Rest] (* Jean-François Alcover, Jan 06 2020 *)
CROSSREFS
Sequence in context: A050762 A321656 A005170 * A218032 A229194 A304790
KEYWORD
nonn
AUTHOR
R. J. Mathar, Jun 26 2013
STATUS
approved