login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A222007
a(n+1) is the smallest prime factor of any (Product_{k=1..j} a(k)) + (Product_{k=j+1..n} a(k)) for j=0..n.
0
2, 3, 5, 11, 41, 7, 23, 17, 19, 13, 37, 53, 73, 151, 29, 43, 31, 59, 71, 47, 79, 61, 107, 83, 103, 163, 109, 89, 101, 113, 67, 97, 137, 131, 139, 127, 229, 149, 173, 227, 179, 239, 181, 191, 193, 167, 197, 241, 277, 157, 233, 211, 397, 257, 271, 283, 251, 281, 313, 269, 347, 349, 317, 263, 379, 223, 367, 199, 353, 401, 421, 463, 293, 337, 383, 389, 331, 431, 359, 443
OFFSET
1,1
EXAMPLE
For n=4, a = <2,3,5>, yielding sums <1+2*3*5, 2+3*5, 2*3+5, 2*3*5+1> = <31,17,11,31>, with least prime factor a(4)=11.
PROG
(PARI) prodsum(ls) = local(left=1, right=prod(x=1, #ls, ls[x]), o=vector(#ls)); for(x=1, #ls, left*=ls[x]; right/=ls[x]; o[x]=left+right); o
newlpf(v) = local(l=0, fs); for(x=1, #v, fs=factor(v[x], if(l>500000, 0, l)); if(!l||fs[1, 1]<l, l=fs[1, 1])); l
s=[2]; while(#s<80, s=concat(s, [newlpf(prodsum(s))]))
CROSSREFS
A modification of A000945, the Euclid-Mullin sequence, which looks only at factors from the j=n term.
Sequence in context: A127181 A323611 A113734 * A188142 A276531 A276532
KEYWORD
nonn,easy
AUTHOR
Phil Carmody, Feb 23 2013
STATUS
approved