

A127181


a(1)=a(2)=1. a(n) = smallest possible (product of b(k)'s + product of c(k)'s), where the sequence's terms a(1) through a(n1) are partitioned somehow into {b(k)} and {c(k)}.


1



1, 1, 2, 3, 5, 11, 37, 221, 3361, 190777, 83199527, 760382931109, 662056785094857629, 538451433632092674800570837, 12495147956629620251492228703104952798089
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

Every term of the sequence is coprime to every other term.


LINKS

Table of n, a(n) for n=1..15.


EXAMPLE

By partitioning (a(1),a(2),...a(7)) = (1,1,2,3,5,11,37) into {b(k)} and {c(k)} so that {b(k)} = (1,2,5,11) and {c(k)} = (1,3,37), then (product of b(k)'s + product of c(k)'s) is minimized. Therefore a(8) = 1*2*5*11 + 1*3*37 = 221.


MATHEMATICA

Nest[ Module[ {prod=Times@@#1}, Append[ #, Min[ #+prod/#&/@Times@@@Union[ Subsets[ # ] ] ] ] ]&, {1, 1, 2, 3}, 11 ] (Peter Pein (petsie(AT)dordos.net), Jan 07 2007)


CROSSREFS

Cf. A127180.
Sequence in context: A006721 A111289 A255420 * A323611 A113734 A222007
Adjacent sequences: A127178 A127179 A127180 * A127182 A127183 A127184


KEYWORD

nonn


AUTHOR

Leroy Quet, Jan 07 2007


EXTENSIONS

More terms from Peter Pein (petsie(AT)dordos.net), Jan 07 2007


STATUS

approved



