login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A127180
a(n) = smallest possible (product of b(k)'s + product of c(k)'s), where the positive integers <= n are partitioned somehow into {b(k)} and {c(k)}.
6
2, 2, 3, 5, 10, 22, 54, 142, 402, 1206, 3810, 12636, 43776, 157824, 590520, 2287080, 9148320, 37719360, 160029696, 697553280, 3119552640, 14295585696, 67052240640, 321571257120, 1575370944000, 7876854720000, 40164235953600
OFFSET
0,1
COMMENTS
The maximum (product of b(k)'s + product of c(k)'s) occurs, for n>=2, when {b(k)} = (2,3,4,...n) and {c(k)} = (1). a(1) = 2 because the product over the empty set is defined here as 1.
LINKS
FORMULA
a(n) <= A060696(n+1) = A076051(n) considering the interleaved partition b={2,4,6,..}, c={1,3,5, 7,...}. - R. J. Mathar, Jan 10 2007
a(n) = A200743(n) + A200744(n) = (A200744(n)^2 - A200743(n)^2) / A038667(n). - Max Alekseyev, Apr 08 2022
EXAMPLE
By partitioning (1,2,3,...8) into {b(k)} and {c(k)} so that {b(k)} = (1,4,6,8) and {c(k)} = (2,3,5,7), then (product of b(k)'s + product of c(k)'s) is minimized. Therefore a(8) = 1*4*6*8 + 2*3*5*7 = 402.
MAPLE
LQprod := proc(S) if nops(S) = 0 then 1 ; else product(S[i], i=1..nops(S)) ; fi ; end: A127180 := proc(n) local S, m, B, b, c, s, res, i ; res := -1 ; S := {} ; for i from 1 to n do S := S union {i} ; od; for m from 0 to n/2 do B := combinat[permute](n, m) ; for i from 1 to nops(B) do b := op(i, B) ; c := S minus convert(b, set) ; s := LQprod(b)+LQprod(c) ; if res < 0 or s < res then res := s ; fi ; od ; od ; RETURN(res) ; end: for n from 1 to 20 do A127180(n) ; od ; # R. J. Mathar, Jan 10 2007
MATHEMATICA
a[n_] := a[n] = Module[{s, t}, {s, t} = MinimalBy[{#, Complement[Range[n], #]}& /@ Subsets[Range[n]], Abs[Times @@ #[[1]] - Times @@ #[[2]]]&][[1]]; Times @@ s + Times @@ t];
Table[Print[n, " ", a[n]]; a[n], {n, 0, 24}] (* Jean-François Alcover, May 06 2023 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Leroy Quet, Jan 07 2007
EXTENSIONS
a(9)-a(13) from R. J. Mathar, Jan 10 2007
a(14)-a(26) from Ray Chandler, Feb 14 2007
STATUS
approved