login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A038667
Minimal value of |product(A) - product(B)| where A and B are a partition of {1,2,3,...,n}.
8
0, 0, 1, 1, 2, 2, 6, 2, 18, 54, 30, 36, 576, 576, 840, 6120, 24480, 20160, 93696, 420480, 800640, 1305696, 7983360, 80313120, 65318400, 326592000, 2286926400, 3002360256, 13680979200, 37744574400, 797369149440, 1763653953600, 16753029012720, 16880461678080, 10176199188480, 26657309952000
OFFSET
0,5
COMMENTS
Conjecture: The sequence of rational numbers A061057(n)/a(n) has 1 as a limit point. Question: What other limit points does the sequence have? - Richard Peterson, Jul 13 2023
LINKS
Max Alekseyev, Table of n, a(n) for n = 0..140 (terms for n = 0..60 from Peter J. Taylor)
FORMULA
a(n) = A200744(n) - A200743(n) = (A200744(n)^2 - A200743(n)^2) / A127180(n). - Max Alekseyev, Apr 08 2022
a(n) >= A061057(n).
EXAMPLE
For n=1, we put 1 in one set and the other is empty; with the standard convention for empty products, both products are 1.
For n=13, the central pair of divisors of n! are 78975 and 78848. Since neither is divisible by 10, these values cannot be obtained. The next pair of divisors are 79200 = 12*11*10*6*5*2*1 and 78624 = 13*9*8*7*4*3, so a(13) = 79200 - 78624 = 576.
MAPLE
a:= proc(n) local l, ll, g, gg, p, i; l:= [i$i=1..n]; ll:= [i!$i=1..n]; g:= proc(m, j, b) local mm, bb, k; if j=1 then m else mm:= m; bb:= b; for k to 2 while (mm<p) do if j=2 or k=2 or k=1 and ll[j-1]*mm>bb then bb:= max(bb, g(mm, j-1, bb)) fi; mm:= mm*l[j] od; bb fi end; Digits:= 700; p:= ceil(sqrt(ll[n])); gg:= g(1, nops(l), 1); ll[n]/gg -gg end: a(0):=0:
seq(a(n), n=0..20); # Alois P. Heinz, Jul 09 2009, revised Oct 17 2015
MATHEMATICA
a[n_] := Module[{l, ll, g, gg, p, i}, l = Range[n]; ll = Array[Factorial, n]; g[m_, j_, b_] := g[m, j, b] = Module[{mm, bb, k}, If[j==1, m, mm=m; bb=b; For[k=1, mm<p, k++, If[j==2 || k==2 || k==1 && ll[[j-1]]*mm > bb , bb = Max[bb, g[mm, j-1, bb]]]; mm = mm*l[[j]]]; bb]]; p = Ceiling[Sqrt[ ll[[n]]]]; gg = g[1, Length[l], 1]; ll[[n]]/gg - gg]; a[0]=0; Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 0, 35}] (* Jean-François Alcover, Feb 29 2016, after Alois P. Heinz *)
PROG
(Python)
from math import prod, factorial
from itertools import combinations
def A038667(n):
m = factorial(n)
return 0 if n == 0 else min(abs((p:=prod(d))-m//p) for l in range(n, n//2, -1) for d in combinations(range(1, n+1), l)) # Chai Wah Wu, Apr 06 2022
KEYWORD
nonn
EXTENSIONS
a(28)-a(31) from Alois P. Heinz, Jul 09 2009
a(1) and examples from Franklin T. Adams-Watters, Nov 22 2011
a(32)-a(33) from Alois P. Heinz, Nov 23 2011
a(34)-a(35) from Alois P. Heinz, Oct 17 2015
STATUS
approved