

A061060


Write product of first n primes as x*y with x<y and x maximal; sequence gives value of yx.


9



1, 1, 1, 1, 13, 17, 1, 41, 157, 1811, 1579, 18859, 95533, 17659, 1995293, 208303, 2396687, 58513111, 299808329, 2460653813, 3952306763, 341777053, 115405393057, 437621467859, 1009861675153, 6660853109087, 29075165225531
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,5


LINKS



EXAMPLE

a(4)=1: 2*3*5*7 = 210 = 14*15, so we can take x=14, y=15, with difference of 1.
Also: n=3: 2*35=1; n=4: 3*52*7=1; n=5: 5*112*3*7=13; n=6: 2*7*133*5*11=17; n=7: 5*11*132*3*7*17=1; n=8: 3*5*11*192*7*13*17=41


MAPLE

A061060aux := proc(l1, l2) local resul ; resul := product(l1[i], i=1..nops(l1)) ; resul := resulproduct(l2[i], i=1..nops(l2)) ; RETURN(abs(resul)) ; end:
A061060 := proc(n) local plist, i, subl, resul, j, l1, l2, k, d ; plist := [] ; resul := 1 ; for i from 1 to n do resul := resul*ithprime(i) ; plist := [op(plist), ithprime(i)] ; od; for i from 1 to n/2 do subl := combinat[choose](plist, i) ; for j from 1 to nops(subl) do l1 := op(j, subl) ; l2 := convert(plist, set) minus convert(l1, set) ; d := A061060aux(l1, l2) ; if d < resul then resul := d ; fi ; od; od ; RETURN(resul) ; end:
for n from 3 to 19 do printf("%d, ", A061060(n)) ; od ; # R. J. Mathar, Aug 26 2006 [This Maple program was attached to A121315. However I think it belongs here, so I renamed the variables and moved it to this entry.  N. J. A. Sloane, Sep 16 2005]


MATHEMATICA

(* first do *) Needs["DiscreteMath`Combinatorica`"] (* then *) f[n_] := Block[{arrayofnprimes = Array[Prime, n], primorial = Times @@ Array[Prime, n], diffmin = Infinity, adiff, sub}, If[n == 1, 1, Do[sub = Times @@ NthSubset[i, arrayofnprimes]; adiff = Abs[primorial/sub  sub]; If[adiff < diffmin, diffmin = adiff], {i, 2, 2^n/2}]; diffmin]]; Do[ Print@f@n, {n, 30}] (* Robert G. Wilson v Sep 14 2006 *)


CROSSREFS



KEYWORD

nonn


AUTHOR



EXTENSIONS

Terms a(16)a(45) in bfile computed by Jud McCranie, Apr 15 2000; Jan 12 2016
a(46)a(60) in bfile from Don Reble, Jul 11 2020


STATUS

approved



