login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A061062
Sum of squared factorials: (0!)^2 + (1!)^2 + (2!)^2 + (3!)^2 +...+ (n!)^2.
9
1, 2, 6, 42, 618, 15018, 533418, 25935018, 1651637418, 133333531818, 13301522971818, 1606652445211818, 231049185247771818, 39006837228880411818, 7639061293780877851818, 1717651314017980301851818
OFFSET
0,2
COMMENTS
There is a Kurepa-like conjecture (see A049782) for this sequence: for primes p>3, p does not divide a(p-1). However, the conjecture fails for p=20879. - T. D. Noe, Dec 08 2004
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..253 (terms 0..100 from Harry J. Smith)
FORMULA
a(n) = sum(k=0...n, (n-k)!^2 ). - Ross La Haye, Sep 21 2004
Recurrence: a(0) = 1, a(1) = 2, a(n) = (n^2+1)*a(n-1) - n^2*a(n-2). - Vladimir Reshetnikov, Oct 28 2015
EXAMPLE
a(2) = 0!*0! + 1!*1! + 2!*2! = 6.
MAPLE
A061062:=n->sum((k!)^2, k=0..n): seq(A061062(n), n=0..15); # Zerinvary Lajos, Jan 22 2008
MATHEMATICA
s=0; Table[s=s+(n!)^2, {n, 0, 20}]
Accumulate[(Range[0, 20]!)^2] (* Harvey P. Dale, Apr 19 2015 *)
PROG
(PARI) { a=0; for (n=0, 100, write("b061062.txt", n, " ", a+=(n!)^2) ) } \\ Harry J. Smith, Jul 17 2009
CROSSREFS
Cf. A001044, A100288 (primes of the form (1!)^2 + (2!)^2 + (3!)^2 +...+ (k!)^2), A104344 (if sum starts at k=1), A049782.
Sequence in context: A066864 A181737 A116896 * A375528 A270141 A294349
KEYWORD
nonn
AUTHOR
Jason Earls, May 27 2001
EXTENSIONS
More terms from T. D. Noe, Dec 08 2004
STATUS
approved