The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A061062 Sum of squared factorials: (0!)^2 + (1!)^2 + (2!)^2 + (3!)^2 +...+ (n!)^2. 8
 1, 2, 6, 42, 618, 15018, 533418, 25935018, 1651637418, 133333531818, 13301522971818, 1606652445211818, 231049185247771818, 39006837228880411818, 7639061293780877851818, 1717651314017980301851818 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS There is a Kurepa-like conjecture (see A049782) for this sequence: for primes p>3, p does not divide a(p-1). However, the conjecture fails for p=20879. - T. D. Noe, Dec 08 2004 LINKS Seiichi Manyama, Table of n, a(n) for n = 0..253 (terms 0..100 from Harry J. Smith) FORMULA a(n) = sum(k=0...n, (n-k)!^2 ). - Ross La Haye, Sep 21 2004 Recurrence: a(0) = 1, a(1) = 2, a(n) = (n^2+1)*a(n-1) - n^2*a(n-2). - Vladimir Reshetnikov, Oct 28 2015 EXAMPLE a(2) = 0!*0! + 1!*1! + 2!*2! = 6. MAPLE A061062:=n->sum((k!)^2, k=0..n): seq(A061062(n), n=0..15); # Zerinvary Lajos, Jan 22 2008 MATHEMATICA s=0; Table[s=s+(n!)^2, {n, 0, 20}] Accumulate[(Range[0, 20]!)^2] (* Harvey P. Dale, Apr 19 2015 *) PROG (PARI) { a=0; for (n=0, 100, write("b061062.txt", n, " ", a+=(n!)^2) ) } \\ Harry J. Smith, Jul 17 2009 CROSSREFS Cf. A001044, A100288 (primes of the form (1!)^2 + (2!)^2 + (3!)^2 +...+ (k!)^2), A104344 (if sum starts at k=1), A049782. Sequence in context: A066864 A181737 A116896 * A270141 A294349 A325782 Adjacent sequences:  A061059 A061060 A061061 * A061063 A061064 A061065 KEYWORD nonn AUTHOR Jason Earls, May 27 2001 EXTENSIONS More terms from T. D. Noe, Dec 08 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 5 06:13 EDT 2020. Contains 333238 sequences. (Running on oeis4.)