login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A222009
(Product(primitive roots of p) - 1)/p, where p = prime(n) and n > 2.
3
1, 2, 61, 71, 684847, 8621, 4768743913, 192769238731, 31302497, 3624013907027, 3389284413733950439, 20347152500093, 73535243111830065216714893617, 579021662547635771462791245283, 38283945111344558723552263341142779661, 60296900399609972459, 271233083114844569997128597, 1382959355737627871079165208413804169
OFFSET
3,2
COMMENTS
Gauss proved that the product of the primitive roots of p is congruent to 1 modulo p, for all primes p except p = 3.
REFERENCES
C. F. Gauss, Disquisitiones Arithmeticae, Yale, 1965; see p. 52.
FORMULA
a(n) = (A123475(n) - 1)/A000040(n) for n > 2.
EXAMPLE
The primitive roots of prime(4) = 7 are 3 and 5, and (3*5 - 1)/7 = 14/7 = 2, so a(4) = 2.
MATHEMATICA
a[n_] := With[{p = Prime[n]}, Select[Range[p - 1], MultiplicativeOrder[#, p] == p - 1 &]]; Table[(Product[ a[n][[i]], {i, Length[a[n]]}] - 1)/Prime[n], {n, 3, 20}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Jonathan Sondow, Feb 09 2013
STATUS
approved