login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A041449
Denominators of continued fraction convergents to sqrt(240).
3
1, 2, 61, 124, 3781, 7686, 234361, 476408, 14526601, 29529610, 900414901, 1830359412, 55811197261, 113452753934, 3459393815281, 7032240384496, 214426605350161, 435885451084818, 13290990137894701, 27017865726874220, 823826961944121301, 1674671789615116822
OFFSET
0,2
FORMULA
G.f.: -(x^2-2*x-1) / ((x^2-8*x+1)*(x^2+8*x+1)). - Colin Barker, Nov 17 2013
a(n) = 62*a(n-2) - a(n-4) for n>3. - Vincenzo Librandi, Dec 18 2013
From Gerry Martens, Jul 11 2015: (Start)
Interspersion of 2 sequences [a0(n-1),a1(n-1)] for n>0:
a0(n) = sqrt(2+(31-8*sqrt(15))^(2*n+1)+(31+8*sqrt(15))^(2*n+1))/8.
a1(n) = 2*sum(i=0,n,a0(i)). (End)
MATHEMATICA
Denominator[Convergents[Sqrt[240], 30]] (* Vincenzo Librandi, Dec 18 2013 *)
a0[n_] := Sqrt[2+(31-8*Sqrt[15])^(1+2*n)+(31+8*Sqrt[15])^(1+2*n)]/8 // Simplify
a1[n_] := 2*Sum[a0[i], {i, 0, n}]
Flatten[MapIndexed[{a0[#-1], a1[#-1]}&, Range[11]]] (* Gerry Martens, Jul 10 2015 *)
PROG
(Magma) I:=[1, 2, 61, 124]; [n le 4 select I[n] else 62*Self(n-2)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Dec 18 2013
CROSSREFS
Sequence in context: A222009 A351728 A336297 * A261944 A142729 A167215
KEYWORD
nonn,frac,easy
EXTENSIONS
More terms from Colin Barker, Nov 17 2013
STATUS
approved