login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A041447
Denominators of continued fraction convergents to sqrt(239).
2
1, 2, 11, 13, 37, 161, 2452, 9969, 22390, 32359, 184185, 400729, 12206055, 24812839, 136270250, 161083089, 458436428, 1994828801, 30380868443, 123518302573, 277417473589, 400935776162, 2282096354399, 4965128484960, 151235950903199, 307437030291358
OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,0,0,12390240,0,0,0,0,0,0,0,0,0,0,0,-1).
FORMULA
G.f.: (1 +2*x +11*x^2 +13*x^3 +37*x^4 +161*x^5 +2452*x^6 +9969*x^7 +22390*x^8 +32359*x^9 +184185*x^10 +400729*x^11 -184185*x^12 +32359*x^13 -22390*x^14 +9969*x^15 -2452*x^16 +161*x^17 -37*x^18 +13*x^19 -11*x^20 +2*x^21 -x^22)/(1 -12390240*x^12 +x^24). - Vincenzo Librandi, Dec 18 2013
a(n) = 12390240*a(n-12) - a(n-24) for n>23. - Vincenzo Librandi, Dec 18 2013
MATHEMATICA
Denominator[Convergents[Sqrt[239], 30]] (* or *) CoefficientList[Series[(1 +2 x + 11 x^2 + 13 x^3 + 37 x^4 + 161 x^5 + 2452 x^6 + 9969 x^7 + 22390 x^8 + 32359 x^9 + 184185 x^10 + 400729 x^11 - 184185 x^12 + 32359 x^13 - 22390 x^14 + 9969 x^15 - 2452 x^16 + 161 x^17 - 37 x^18 + 13 x^19 - 11 x^20 + 2 x^21 - x^22)/(1 - 12390240 x^12 + x^24), {x, 0, 30}], x] (* Vincenzo Librandi, Dec 18 2013 *)
PROG
(Magma) I:=[1, 2, 11, 13, 37, 161, 2452, 9969, 22390, 32359, 184185, 400729, 12206055, 24812839, 136270250, 161083089, 458436428, 1994828801, 30380868443, 123518302573, 277417473589, 400935776162, 2282096354399, 4965128484960]; [n le 24 select I[n] else 12390240*Self(n-12)-Self(n-24): n in [1..30]]; // Vincenzo Librandi, Dec 18 2013
CROSSREFS
Cf. A041446.
Sequence in context: A023288 A106960 A084405 * A291464 A262832 A091021
KEYWORD
nonn,frac,easy
AUTHOR
EXTENSIONS
More terms from Vincenzo Librandi, Dec 18 2013
STATUS
approved