The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A262832 {2,5}-primes (defined in Comments). 3
 2, 11, 13, 41, 151, 173, 181, 191, 223, 233, 241, 313, 331, 421, 443, 463, 541, 563, 641, 701, 733, 743, 953, 1373, 1451, 1471, 1483, 1753, 1783, 1831, 1993, 2011, 2143, 2161, 2351, 2411, 2693, 3041, 3061, 3491, 3571, 3623, 3761, 3943, 4051, 4373, 4643, 4813 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Let S = {b(1), b(2), ..., b(k)}, where k > 1 and b(i) are distinct integers > 1 for j = 1..k. Call p an S-prime if the digits of p in base b(i) spell a prime in each of the bases b(j) in S, for i = 1..k. Equivalently, p is an S-prime if p is a strong-V prime (defined at A262729) for every permutation of the vector V = (b(1), b(2), ..., b(k)). LINKS Clark Kimberling, Table of n, a(n) for n = 1..1000 MATHEMATICA {b1, b2} = {2, 5}; u = Select[Prime[Range[6000]], PrimeQ[FromDigits[IntegerDigits[#, b1], b2]] &]; (* A235475 *) v = Select[Prime[Range[6000]], PrimeQ[FromDigits[IntegerDigits[#, b2], b1]] &]; (* A262831 *) w = Intersection[u, v]; (* A262832 *) (* Peter J. C. Moses, Sep 27 2015 *) CROSSREFS Cf. A000040, A262729, A235266, A262830. Sequence in context: A084405 A041447 A291464 * A091021 A042563 A041163 Adjacent sequences:  A262829 A262830 A262831 * A262833 A262834 A262835 KEYWORD nonn,easy,base AUTHOR Clark Kimberling, Oct 31 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 18 19:46 EST 2020. Contains 331030 sequences. (Running on oeis4.)