login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A262729
Strong (2,3,5,7)-primes. (See Comments for precise definition.)
11
2, 171472673, 343808687, 1364225981, 1469999801, 1871684753, 2110769237, 2227044401, 2411201729, 2485782361, 2545607453, 3795488227, 3946237717, 4213334953, 4395443513, 5308651577, 5770033901, 5832097819, 6385775491, 6694883219, 7064806421, 7235208829
OFFSET
1,1
COMMENTS
Let V = (b(1), b(2), ..., b(k)), where k > 1 and b(i) are distinct integers > 1 for j = 1..k. Call p a V-prime if the digits of p in base b(1) spell a prime in each of the bases b(2), ..., b(k). Call p a strong V-prime if p is a (b(j), ..., b(k))-prime for each of the tuples (b(j), ..., b(k)), for j = 1..k-1.
a(157) > 10^11. - Hiroaki Yamanouchi, Oct 25 2015
LINKS
EXAMPLE
Let p = 171472673. Confirmation that p is a strong (2,3,5,7)-prime follows.
Base-2 for p: u = (1,0,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,1,1,1,0,0,1,0,0,0,0,1);
u in base 3 spells the prime 8488002487771;
u in base 5 spells the prime 7749195106457425001;
u is base 7 spells the prime 67054080721013093290423.
Base-3 for p: v = (1, 0, 2, 2, 2, 1, 1, 2, 2, 2, 0, 1, 0, 2, 1, 2, 0, 2);
v in base 5 spells the prime 838940251427;
v in base 7 spells the prime 243692337097757.
Base-5 for p: w = (3, 2, 2, 3, 4, 4, 1, 1, 1, 1, 4, 3);
w in base 7 spells the prime 6598716743.
MATHEMATICA
{b1, b2, b3, b4} = {2, 3, 5, 7}; z = 10000000;
Select[Prime[Range[z]],
PrimeQ[FromDigits[IntegerDigits[#, b1], b2]] &&
PrimeQ[FromDigits[IntegerDigits[#, b1], b3]] &&
PrimeQ[FromDigits[IntegerDigits[#, b1], b4]] &&
PrimeQ[FromDigits[IntegerDigits[#, b2], b3]] &&
PrimeQ[FromDigits[IntegerDigits[#, b2], b4]] &&
PrimeQ[FromDigits[IntegerDigits[#, b3], b4]] &]
(* Peter J. C. Moses, Sep 27 2015 *)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Clark Kimberling, Oct 03 2015
EXTENSIONS
a(4)-a(22) from Hiroaki Yamanouchi, Oct 25 2015
STATUS
approved