This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A262728 (2,3,5,7)-primes (see comments for precise definition). 4
 2, 173, 181, 233, 443, 877, 967, 1373, 1831, 4001, 4231, 4663, 8191, 8753, 9043, 10333, 10631, 13537, 14591, 16931, 18211, 25411, 32707, 32843, 33637, 37573, 54773, 56167, 63853, 64513, 78101, 84131, 100207, 102667, 106087, 112571, 113153, 133087, 149531 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Let V = (b(1), b(2), ..., b(k)), where k > 1 and b(i) are distinct integers > 1 for j = 1..k. Call p a V-prime if the digits of p in base b(1) spell a prime in each of the bases b(2), ..., b(k). LINKS Clark Kimberling, Table of n, a(n) for n = 1..1000 EXAMPLE Consider the number a(2) = 173: in base 2, a(2) = 10101101, which is the prime 172; in base 3, 10101101 is the prime 2467; in base 5, 10101101 is the prime 81401; in base 7, 10101101 is the prime 840743 MATHEMATICA {b1, b2, b3, b4} = {2, 3, 5, 7}; z = 15000; u = Select[Prime[Range[z]], PrimeQ[FromDigits[IntegerDigits[#, b1], b2]] && PrimeQ[FromDigits[IntegerDigits[#, b1], b3]] && PrimeQ[FromDigits[IntegerDigits[#, b1], b4]] &] (* Peter J. C. Moses, Sep 27 2015 *) CROSSREFS Cf. A000040, A262729. Sequence in context: A209607 A243230 A051030 * A139935 A281958 A172231 Adjacent sequences:  A262725 A262726 A262727 * A262729 A262730 A262731 KEYWORD nonn,easy,base AUTHOR Clark Kimberling, Oct 02 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 12 05:15 EST 2018. Contains 318052 sequences. (Running on oeis4.)