login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A339641 Number of main classes of Brown's diagonal Latin squares of order 2n. 2
0, 1, 2, 173 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

A Brown's diagonal Latin square is a horizontally symmetric row-inverse or vertically symmetric column-inverse diagonal Latin square. Diagonal Latin squares of this type have interesting properties, for example, a large number of transversals.

Plain symmetry diagonal Latin squares are not exists for odd orders, so a(2n+1)=0.

REFERENCES

J. W. Brown, F. Cherry, L. Most, M. Most, E. T. Parker, W. D. Wallis, Completion of the spectrum of orthogonal diagonal Latin squares, Lecture notes in pure and applied mathematics. 1992. Vol. 139. pp. 43-49.

LINKS

Table of n, a(n) for n=1..4.

Eduard I. Vatutin, Enumeration of the Brown's diagonal Latin squares of orders 1-9 (in Russian).

EXAMPLE

Diagonal Latin square

   0 1 2 3 4 5 6 7 8 9

   1 2 3 4 0 9 5 6 7 8

   4 0 1 7 3 6 2 8 9 5

   8 7 6 5 9 0 4 3 2 1

   7 6 5 0 8 1 9 4 3 2

   9 8 7 6 5 4 3 2 1 0

   5 9 8 2 6 3 7 1 0 4

   3 5 0 8 7 2 1 9 4 6

   2 3 4 9 1 8 0 5 6 7

   6 4 9 1 2 7 8 0 5 3

is a Brown's square due to it is horizontally symmetric (see A287649) and its rows forms row-inverse pairs:

   0 1 2 3 4 5 6 7 8 9   . . . . . . . . . .   . . . . . . . . . .

   . . . . . . . . . .   1 2 3 4 0 9 5 6 7 8   . . . . . . . . . .

   . . . . . . . . . .   . . . . . . . . . .   4 0 1 7 3 6 2 8 9 5

   . . . . . . . . . .   8 7 6 5 9 0 4 3 2 1   . . . . . . . . . .

   . . . . . . . . . .   . . . . . . . . . .   . . . . . . . . . .

   9 8 7 6 5 4 3 2 1 0   . . . . . . . . . .   . . . . . . . . . .

   . . . . . . . . . .   . . . . . . . . . .   5 9 8 2 6 3 7 1 0 4

   . . . . . . . . . .   . . . . . . . . . .   . . . . . . . . . .

   . . . . . . . . . .   . . . . . . . . . .   . . . . . . . . . .

   . . . . . . . . . .   . . . . . . . . . .   . . . . . . . . . .

.

   . . . . . . . . . .   . . . . . . . . . .

   . . . . . . . . . .   . . . . . . . . . .

   . . . . . . . . . .   . . . . . . . . . .

   . . . . . . . . . .   . . . . . . . . . .

   7 6 5 0 8 1 9 4 3 2   . . . . . . . . . .

   . . . . . . . . . .   . . . . . . . . . .

   . . . . . . . . . .   . . . . . . . . . .

   . . . . . . . . . .   3 5 0 8 7 2 1 9 4 6

   2 3 4 9 1 8 0 5 6 7   . . . . . . . . . .

   . . . . . . . . . .   6 4 9 1 2 7 8 0 5 3

CROSSREFS

Cf. A287649, A339305, A340186.

Sequence in context: A209607 A243230 A051030 * A262728 A139935 A281958

Adjacent sequences:  A339638 A339639 A339640 * A339642 A339643 A339644

KEYWORD

nonn,more,hard

AUTHOR

Eduard I. Vatutin, Dec 24 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 27 19:46 EST 2021. Contains 340479 sequences. (Running on oeis4.)