The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A339641 Number of main classes of Brown's diagonal Latin squares of order 2n. 2
 0, 1, 2, 173 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS A Brown's diagonal Latin square is a horizontally symmetric row-inverse or vertically symmetric column-inverse diagonal Latin square. Diagonal Latin squares of this type have interesting properties, for example, a large number of transversals. Plain symmetry diagonal Latin squares do not exist for odd orders, so a(2n+1)=0. REFERENCES J. W. Brown, F. Cherry, L. Most, M. Most, E. T. Parker, W. D. Wallis, Completion of the spectrum of orthogonal diagonal Latin squares, Lecture notes in pure and applied mathematics, 1992, Vol. 139, pp. 43-49. LINKS Eduard I. Vatutin, Enumeration of the Brown's diagonal Latin squares of orders 1-9 (in Russian). EXAMPLE The diagonal Latin square .    0 1 2 3 4 5 6 7 8 9    1 2 3 4 0 9 5 6 7 8    4 0 1 7 3 6 2 8 9 5    8 7 6 5 9 0 4 3 2 1    7 6 5 0 8 1 9 4 3 2    9 8 7 6 5 4 3 2 1 0    5 9 8 2 6 3 7 1 0 4    3 5 0 8 7 2 1 9 4 6    2 3 4 9 1 8 0 5 6 7    6 4 9 1 2 7 8 0 5 3 . is a Brown's square since it is horizontally symmetric (see A287649) and its rows form row-inverse pairs: .    0 1 2 3 4 5 6 7 8 9   . . . . . . . . . .   . . . . . . . . . .    . . . . . . . . . .   1 2 3 4 0 9 5 6 7 8   . . . . . . . . . .    . . . . . . . . . .   . . . . . . . . . .   4 0 1 7 3 6 2 8 9 5    . . . . . . . . . .   8 7 6 5 9 0 4 3 2 1   . . . . . . . . . .    . . . . . . . . . .   . . . . . . . . . .   . . . . . . . . . .    9 8 7 6 5 4 3 2 1 0   . . . . . . . . . .   . . . . . . . . . .    . . . . . . . . . .   . . . . . . . . . .   5 9 8 2 6 3 7 1 0 4    . . . . . . . . . .   . . . . . . . . . .   . . . . . . . . . .    . . . . . . . . . .   . . . . . . . . . .   . . . . . . . . . .    . . . . . . . . . .   . . . . . . . . . .   . . . . . . . . . . .    . . . . . . . . . .   . . . . . . . . . .    . . . . . . . . . .   . . . . . . . . . .    . . . . . . . . . .   . . . . . . . . . .    . . . . . . . . . .   . . . . . . . . . .    7 6 5 0 8 1 9 4 3 2   . . . . . . . . . .    . . . . . . . . . .   . . . . . . . . . .    . . . . . . . . . .   . . . . . . . . . .    . . . . . . . . . .   3 5 0 8 7 2 1 9 4 6    2 3 4 9 1 8 0 5 6 7   . . . . . . . . . .    . . . . . . . . . .   6 4 9 1 2 7 8 0 5 3 CROSSREFS Cf. A287649, A339305, A340186. Sequence in context: A209607 A243230 A051030 * A262728 A139935 A281958 Adjacent sequences:  A339638 A339639 A339640 * A339642 A339643 A339644 KEYWORD nonn,more,hard AUTHOR Eduard I. Vatutin, Dec 24 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 24 12:00 EST 2022. Contains 350536 sequences. (Running on oeis4.)