The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A339639 a(n) is the sum of the Wieferich and Wall-Sun-Sun residues of prime(n). 0
 3, 6, 20, 35, 110, 78, 493, 114, 736, 783, 961, 518, 2542, 2752, 2820, 3392, 1062, 5124, 1139, 4047, 8322, 5372, 5727, 979, 9118, 19089, 8343, 3959, 10137, 16159, 3937, 10611, 15207, 20433, 32184, 17516, 19782, 37001, 15197, 23009, 40096, 50499, 27504, 26055 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS If a(n) = 0 then prime(n) is both a Wieferich prime (A001220) and a Wall-Sun-Sun (Fibonacci-Wieferich) prime. If the first case of Fermat's last theorem fails for a prime p, that prime is both a Wieferich prime (cf. Wieferich, 1909) and a Wall-Sun-Sun prime (cf. Sun, 1992). LINKS Table of n, a(n) for n=1..44. Zhi-Wei Sun, Fibonacci numbers and Fermat's last theorem, Acta Arithemtica, Vol. 60, No. 4 (1992), 371-388. A. Wieferich, Zum letzten Fermat'schen Theorem, Journal für die reine und angewandte Mathematik, 136 (1909), 293-302, DOI:10.1515/crll.1909.136.293. FORMULA a(n) = A196202(n) + A113650(n) - 1. PROG (PARI) a(n) = my(p=prime(n)); lift(Mod([1, 1; 1, 0]^(p-kronecker(p, 5)), p^2)[1, 2]) + lift(Mod(2, p^2)^(p-1)) - 1 CROSSREFS Cf. A001220, A113650, A196202. Sequence in context: A176993 A359963 A276748 * A081181 A062164 A265112 Adjacent sequences: A339636 A339637 A339638 * A339640 A339641 A339642 KEYWORD nonn AUTHOR Felix Fröhlich, Dec 11 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 25 11:12 EDT 2024. Contains 372788 sequences. (Running on oeis4.)