login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A081181
Staircase on Pascal's triangle.
4
1, 3, 6, 20, 35, 126, 210, 792, 1287, 5005, 8008, 31824, 50388, 203490, 319770, 1307504, 2042975, 8436285, 13123110, 54627300, 84672315, 354817320, 548354040, 2310789600, 3562467300, 15084504396, 23206929840, 98672427616, 151532656696
OFFSET
0,2
COMMENTS
Arrange Pascal's triangle as a square array. a(n) is then a diagonal staircase on the square array. A companion staircase is given by A065942.
LINKS
FORMULA
a(n) = binomial(floor((n + 1)/2) + (n + 1), n).
Conjecture: 8*n*(n+3)*(1845*n-2882)*a(n) +4*(-5097*n^3+11143*n^2 +42110*n-27416)*a(n-1) +6*(-16605*n^3-7272*n^2-16701*n+9490)*a(n-2) +3*(3*n-5)*(5097*n-949)*(3*n-4)*a(n-3)=0. - R. J. Mathar, Oct 29 2014
MATHEMATICA
Table[Binomial[Floor[(n + 1) / 2] + (n + 1), n], {n, 0, 30}] (* Vincenzo Librandi, Aug 06 2013 *)
PROG
(Magma) [Binomial(Floor((n+1)/2)+(n+1), n): n in [0..30]]; // Vincenzo Librandi, Aug 06 2013
(SageMath) [binomial(((n+1)//2)+(n+1), n) for n in range(41)] # G. C. Greubel, Jan 14 2024
CROSSREFS
Cf. A065942.
Sequence in context: A359963 A276748 A339639 * A062164 A265112 A052408
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Mar 11 2003
STATUS
approved