login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A265112
a(n) = A023360(A000040(n)): number of compositions of prime(n) into prime parts.
3
1, 1, 3, 6, 20, 46, 232, 501, 2352, 24442, 53243, 550863, 2616338, 5701553, 27077005, 280237217, 2900328380, 6320545915, 65414893802, 310664269401, 677015556295, 7006815193063, 33276323565116, 344395408399372, 7767597342090622, 36889382062795742
OFFSET
1,3
LINKS
EXAMPLE
prime(4) = 7; a(4) = A023360(7) = 6 because there are 6 compositions of 7 into prime parts {2,3,5,7}: {7}, {5+2}, {3+2+2}, {2+5}, {2+3+2} and {2+2+3}.
MAPLE
N:= 1000: # to get a(1) to a(A000720(N))
Primes:= select(isprime, [2, seq(i, i=3..N, 2)]):
M:= nops(Primes);
F:= proc(x)
option remember;
local k;
add(procname(x-Primes[k]), k=1..numtheory:-pi(x));
end proc:
F(0):= 1:
seq(F(Primes[n]), n=1..M); # Robert Israel, Dec 02 2015
MATHEMATICA
Needs["Combinatorica`"]; Table[Length@ Flatten[Permutations[#, {Length@ #}] & /@ Select[Combinatorica`Partitions@ Prime@ n, AllTrue[#, PrimeQ] &], 1], {n, 14}] (* Version 10, slow, or *)
lim = 101; t = Rest@ CoefficientList[Series[1/(1 - Sum[x^Prime[i], {i, 1, PrimePi@ lim}]), {x, 0, lim}], x]; t[[#]] &@ Prime@ Range@ PrimePi@ lim
(* Michael De Vlieger, Dec 01 2015, after David W. Wilson at A023360 *)
CROSSREFS
Cf. A000040 (prime numbers), A023360.
Sequence in context: A339639 A081181 A062164 * A052408 A148573 A148574
KEYWORD
nonn,easy
AUTHOR
Bob Selcoe, Dec 01 2015
STATUS
approved