The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A023360 Number of compositions of n into prime parts. 26
 1, 0, 1, 1, 1, 3, 2, 6, 6, 10, 16, 20, 35, 46, 72, 105, 152, 232, 332, 501, 732, 1081, 1604, 2352, 3493, 5136, 7595, 11212, 16534, 24442, 36039, 53243, 78573, 115989, 171264, 252754, 373214, 550863, 813251, 1200554, 1772207, 2616338, 3862121, 5701553 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,6 REFERENCES S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 292-295. Silvia Heubach and Toufik Mansour, Combinatorics of Compositions and Words, CRC Press, 2010. LINKS T. D. Noe, Table of n, a(n) for n=0..500 S. R. Finch, Kalmar's composition constant, June 5, 2003. [Cached copy, with permission of the author] Philippe Flajolet, More information including asymptotic form (1995). [Broken link] P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 43, 298 FORMULA a(n) = Sum_{prime p<=n} a(n-p) with a(0)=1. - Henry Bottomley, Dec 15 2000 G.f.: 1/(1 - Sum_{k>=1} x^A000040(k)). - Andrew Howroyd, Dec 28 2017 EXAMPLE 2; 3; 4 = 2+2; 5 = 2+3 = 3+2; 6 = 2+2+2 = 3+3; 7 = 2+2+3 = 2+3+2 = 3+2+2 = 2+5 = 5+2; etc. MATHEMATICA CoefficientList[ Series[1 / (1 - Sum[ x^Prime[i], {i, 15}]), {x, 0, 45}], x] PROG (PARI) {my(n=60); Vec(1/(1-sum(k=1, n, if(isprime(k), x^k, 0))) + O(x*x^n))} \\ Andrew Howroyd, Dec 28 2017 CROSSREFS Cf. A000607 for the unordered (partition) version. Sequence in context: A064684 A098071 A286970 * A154028 A157793 A096375 Adjacent sequences:  A023357 A023358 A023359 * A023361 A023362 A023363 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 7 04:20 EDT 2020. Contains 333292 sequences. (Running on oeis4.)