login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A023361 Number of compositions of n into positive triangular numbers. 35
1, 1, 1, 2, 3, 4, 7, 11, 16, 25, 40, 61, 94, 147, 227, 351, 546, 846, 1309, 2030, 3147, 4876, 7558, 11715, 18154, 28136, 43609, 67586, 104748, 162346, 251610, 389958, 604381, 936699, 1451743, 2249991, 3487153, 5404570, 8376292, 12982016, 20120202, 31183350 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,4
COMMENTS
Number of compositions [c(1), c(2), c(3), ...] of n such that either c(k) = c(k-1) + 1 or c(k) = 1; see example. Same as fountains of coins (A005169) where each valley is at the lowest level. - Joerg Arndt, Mar 25 2014
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..5256 (terms n = 0..500 from T. D. Noe)
N. Robbins, On compositions whose parts are polygonal numbers, Annales Univ. Sci. Budapest., Sect. Comp. 43 (2014) 239-243. See p. 242.
Eric Weisstein's World of Mathematics, q-Pochhammer Symbol.
FORMULA
G.f. : 1 / (1 - Sum_{k>=1} x^(k*(k+1)/2) ).
a(n) ~ c * d^n, where d = 1/A106332 = 1.5498524695188884304192160776463163555... is the root of the equation d^(1/8) * EllipticTheta(2, 0, 1/sqrt(d)) = 4 and c = 0.492059962414480455851222791075288170662444559041717451009563731799... - Vaclav Kotesovec, May 01 2014, updated Feb 17 2017
a(n) = a(n-1) + a(n-3) + a(n-6) + a(n-10) + ... Gregory L. Simay, Jun 09 2016
G.f.: 1/(2 - (x^2;x^2)_inf/(x;x^2)_inf), where (a;q)_inf is the q-Pochhammer symbol. - Vladimir Reshetnikov, Sep 23 2016
G.f.: 1/(2 - theta_2(sqrt(q))/(2*q^(1/8))), where theta_2() is the Jacobi theta function. - Ilya Gutkovskiy, Aug 08 2018
EXAMPLE
From Joerg Arndt, Mar 25 2014: (Start)
There are a(9) = 25 compositions of 9 such that either c(k) = c(k-1) + 1 or c(k) = 1:
01: [ 1 1 1 1 1 1 1 1 1 ]
02: [ 1 1 1 1 1 1 1 2 ]
03: [ 1 1 1 1 1 1 2 1 ]
04: [ 1 1 1 1 1 2 1 1 ]
05: [ 1 1 1 1 2 1 1 1 ]
06: [ 1 1 1 1 2 1 2 ]
07: [ 1 1 1 1 2 3 ]
08: [ 1 1 1 2 1 1 1 1 ]
09: [ 1 1 1 2 1 1 2 ]
10: [ 1 1 1 2 1 2 1 ]
11: [ 1 1 1 2 3 1 ]
12: [ 1 1 2 1 1 1 1 1 ]
13: [ 1 1 2 1 1 1 2 ]
14: [ 1 1 2 1 1 2 1 ]
15: [ 1 1 2 1 2 1 1 ]
16: [ 1 1 2 3 1 1 ]
17: [ 1 2 1 1 1 1 1 1 ]
18: [ 1 2 1 1 1 1 2 ]
19: [ 1 2 1 1 1 2 1 ]
20: [ 1 2 1 1 2 1 1 ]
21: [ 1 2 1 2 1 1 1 ]
22: [ 1 2 1 2 1 2 ]
23: [ 1 2 1 2 3 ]
24: [ 1 2 3 1 1 1 ]
25: [ 1 2 3 1 2 ]
The last few, together with the corresponding fountains of coins are:
. 20: [ 1 2 1 1 2 1 1 ]
.
. O O
. O O O O O O O
.
.
. 21: [ 1 2 1 2 1 1 1 ]
.
. O O
. O O O O O O O
.
.
. 22: [ 1 2 1 2 1 2 ]
.
. O O O
. O O O O O O
.
.
. 23: [ 1 2 1 2 3 ]
.
. O
. O O O
. O O O O O
.
.
. 24: [ 1 2 3 1 1 1 ]
.
. O
. O O
. O O O O O O
.
.
. 25: [ 1 2 3 1 2 ]
.
. O
. O O O
. O O O O O
(End)
Applying recursion formula: 40 = a(10) = a(9) + a(7) + a(4) + a(0) = 25 + 11 + 3 + 1. - Gregory L. Simay, Jun 14 2016
MAPLE
a:= proc(n) option remember; `if`(n=0, 1,
add(`if`(issqr(8*j+1), a(n-j), 0), j=1..n))
end:
seq(a(n), n=0..50); # Alois P. Heinz, Jul 31 2017
MATHEMATICA
(1/(2 - QPochhammer[x^2]/QPochhammer[x, x^2]) + O[x]^30)[[3]] (* Vladimir Reshetnikov, Sep 23 2016 *)
a[n_] := a[n] = If[n == 0, 1, Sum[ If[ IntegerQ[ Sqrt[8j+1]], a[n-j], 0], {j, 1, n}]];
Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Jun 05 2018, after Alois P. Heinz *)
PROG
(PARI)
N=66; x='x+O('x^N);
Vec( 1/( 1 - sum(k=1, 1+sqrtint(2*N), x^binomial(k+1, 2) ) ) )
/* Joerg Arndt, Sep 30 2012 */
CROSSREFS
Cf. A106332.
Sequence in context: A333260 A196382 A120415 * A210518 A113435 A367667
KEYWORD
nonn
AUTHOR
David W. Wilson, Jun 14 1998
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 24 14:32 EDT 2024. Contains 371960 sequences. (Running on oeis4.)