login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A023361 Number of compositions of n into positive triangular numbers. 20
1, 1, 1, 2, 3, 4, 7, 11, 16, 25, 40, 61, 94, 147, 227, 351, 546, 846, 1309, 2030, 3147, 4876, 7558, 11715, 18154, 28136, 43609, 67586, 104748, 162346, 251610, 389958, 604381, 936699, 1451743, 2249991, 3487153, 5404570, 8376292, 12982016, 20120202, 31183350 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

Number of compositions [c(1), c(2), c(3), ...] of n such that either c(k) = c(k-1) + 1 or c(k) = 1; see example. Same as fountains of coins (A005169) where each valley is at the lowest level. - Joerg Arndt, Mar 25 2014

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..5256 (terms n = 0..500 from T. D. Noe)

N. Robbins, On compositions whose parts are polygonal numbers, Annales Univ. Sci. Budapest., Sect. Comp. 43 (2014) 239-243. See p. 242.

Eric Weisstein's World of Mathematics, q-Pochhammer Symbol.

FORMULA

G.f. : 1 / (1 - Sum_{k>=1} x^(k*(k+1)/2) ).

a(n) ~ c * d^n, where d = 1/A106332 = 1.5498524695188884304192160776463163555... is the root of the equation d^(1/8) * EllipticTheta(2, 0, 1/sqrt(d)) = 4 and c = 0.492059962414480455851222791075288170662444559041717451009563731799... - Vaclav Kotesovec, May 01 2014, updated Feb 17 2017

a(n) = a(n-1) + a(n-3) + a(n-6) + a(n-10) + ...  Gregory L. Simay, Jun 09 2016

G.f.: 1/(2 - (x^2;x^2)_inf/(x;x^2)_inf), where (a;q)_inf is the q-Pochhammer symbol. - Vladimir Reshetnikov, Sep 23 2016

G.f.: 1/(2 - theta_2(sqrt(q))/(2*q^(1/8))), where theta_2() is the Jacobi theta function. - Ilya Gutkovskiy, Aug 08 2018

EXAMPLE

From Joerg Arndt, Mar 25 2014: (Start)

There are a(9) = 25 compositions of 9 such that either c(k) = c(k-1) + 1 or c(k) = 1:

01:  [ 1 1 1 1 1 1 1 1 1 ]

02:  [ 1 1 1 1 1 1 1 2 ]

03:  [ 1 1 1 1 1 1 2 1 ]

04:  [ 1 1 1 1 1 2 1 1 ]

05:  [ 1 1 1 1 2 1 1 1 ]

06:  [ 1 1 1 1 2 1 2 ]

07:  [ 1 1 1 1 2 3 ]

08:  [ 1 1 1 2 1 1 1 1 ]

09:  [ 1 1 1 2 1 1 2 ]

10:  [ 1 1 1 2 1 2 1 ]

11:  [ 1 1 1 2 3 1 ]

12:  [ 1 1 2 1 1 1 1 1 ]

13:  [ 1 1 2 1 1 1 2 ]

14:  [ 1 1 2 1 1 2 1 ]

15:  [ 1 1 2 1 2 1 1 ]

16:  [ 1 1 2 3 1 1 ]

17:  [ 1 2 1 1 1 1 1 1 ]

18:  [ 1 2 1 1 1 1 2 ]

19:  [ 1 2 1 1 1 2 1 ]

20:  [ 1 2 1 1 2 1 1 ]

21:  [ 1 2 1 2 1 1 1 ]

22:  [ 1 2 1 2 1 2 ]

23:  [ 1 2 1 2 3 ]

24:  [ 1 2 3 1 1 1 ]

25:  [ 1 2 3 1 2 ]

The last few, together with the corresponding fountains of coins are:

.  20:  [ 1 2 1 1 2 1 1 ]

.

.     O     O

.    O O O O O O O

.

.

.  21:  [ 1 2 1 2 1 1 1 ]

.

.     O   O

.    O O O O O O O

.

.

.  22:  [ 1 2 1 2 1 2 ]

.

.     O   O   O

.    O O O O O O

.

.

.  23:  [ 1 2 1 2 3 ]

.

.           O

.      O   O O

.     O O O O O

.

.

.  24:  [ 1 2 3 1 1 1 ]

.

.       O

.      O O

.     O O O O O O

.

.

.  25:  [ 1 2 3 1 2 ]

.

.       O

.      O O   O

.     O O O O O

(End)

Applying recursion formula: 40 = a(10) = a(9) + a(7) + a(4) + a(0) = 25 + 11 + 3 + 1. - Gregory L. Simay, Jun 14 2016

MAPLE

a:= proc(n) option remember; `if`(n=0, 1,

      add(`if`(issqr(8*j+1), a(n-j), 0), j=1..n))

    end:

seq(a(n), n=0..50);  # Alois P. Heinz, Jul 31 2017

MATHEMATICA

(1/(2 - QPochhammer[x^2]/QPochhammer[x, x^2]) + O[x]^30)[[3]] (* Vladimir Reshetnikov, Sep 23 2016 *)

a[n_] := a[n] = If[n == 0, 1, Sum[ If[ IntegerQ[ Sqrt[8j+1]], a[n-j], 0], {j, 1, n}]];

Table[a[n], {n, 0, 50}] (* Jean-Fran├žois Alcover, Jun 05 2018, after Alois P. Heinz *)

PROG

(PARI)

N=66;  x='x+O('x^N);

Vec( 1/( 1 - sum(k=1, 1+sqrtint(2*N), x^binomial(k+1, 2) ) ) )

/* Joerg Arndt, Sep 30 2012 */

CROSSREFS

Cf. A106332.

Sequence in context: A141001 A196382 A120415 * A210518 A113435 A222022

Adjacent sequences:  A023358 A023359 A023360 * A023362 A023363 A023364

KEYWORD

nonn

AUTHOR

David W. Wilson, Jun 14 1998

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 24 01:20 EDT 2018. Contains 316541 sequences. (Running on oeis4.)