The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A023361 Number of compositions of n into positive triangular numbers. 34
 1, 1, 1, 2, 3, 4, 7, 11, 16, 25, 40, 61, 94, 147, 227, 351, 546, 846, 1309, 2030, 3147, 4876, 7558, 11715, 18154, 28136, 43609, 67586, 104748, 162346, 251610, 389958, 604381, 936699, 1451743, 2249991, 3487153, 5404570, 8376292, 12982016, 20120202, 31183350 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Number of compositions [c(1), c(2), c(3), ...] of n such that either c(k) = c(k-1) + 1 or c(k) = 1; see example. Same as fountains of coins (A005169) where each valley is at the lowest level. - Joerg Arndt, Mar 25 2014 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..5256 (terms n = 0..500 from T. D. Noe) N. Robbins, On compositions whose parts are polygonal numbers, Annales Univ. Sci. Budapest., Sect. Comp. 43 (2014) 239-243. See p. 242. Eric Weisstein's World of Mathematics, q-Pochhammer Symbol. FORMULA G.f. : 1 / (1 - Sum_{k>=1} x^(k*(k+1)/2) ). a(n) ~ c * d^n, where d = 1/A106332 = 1.5498524695188884304192160776463163555... is the root of the equation d^(1/8) * EllipticTheta(2, 0, 1/sqrt(d)) = 4 and c = 0.492059962414480455851222791075288170662444559041717451009563731799... - Vaclav Kotesovec, May 01 2014, updated Feb 17 2017 a(n) = a(n-1) + a(n-3) + a(n-6) + a(n-10) + ... Gregory L. Simay, Jun 09 2016 G.f.: 1/(2 - (x^2;x^2)_inf/(x;x^2)_inf), where (a;q)_inf is the q-Pochhammer symbol. - Vladimir Reshetnikov, Sep 23 2016 G.f.: 1/(2 - theta_2(sqrt(q))/(2*q^(1/8))), where theta_2() is the Jacobi theta function. - Ilya Gutkovskiy, Aug 08 2018 EXAMPLE From Joerg Arndt, Mar 25 2014: (Start) There are a(9) = 25 compositions of 9 such that either c(k) = c(k-1) + 1 or c(k) = 1: 01: [ 1 1 1 1 1 1 1 1 1 ] 02: [ 1 1 1 1 1 1 1 2 ] 03: [ 1 1 1 1 1 1 2 1 ] 04: [ 1 1 1 1 1 2 1 1 ] 05: [ 1 1 1 1 2 1 1 1 ] 06: [ 1 1 1 1 2 1 2 ] 07: [ 1 1 1 1 2 3 ] 08: [ 1 1 1 2 1 1 1 1 ] 09: [ 1 1 1 2 1 1 2 ] 10: [ 1 1 1 2 1 2 1 ] 11: [ 1 1 1 2 3 1 ] 12: [ 1 1 2 1 1 1 1 1 ] 13: [ 1 1 2 1 1 1 2 ] 14: [ 1 1 2 1 1 2 1 ] 15: [ 1 1 2 1 2 1 1 ] 16: [ 1 1 2 3 1 1 ] 17: [ 1 2 1 1 1 1 1 1 ] 18: [ 1 2 1 1 1 1 2 ] 19: [ 1 2 1 1 1 2 1 ] 20: [ 1 2 1 1 2 1 1 ] 21: [ 1 2 1 2 1 1 1 ] 22: [ 1 2 1 2 1 2 ] 23: [ 1 2 1 2 3 ] 24: [ 1 2 3 1 1 1 ] 25: [ 1 2 3 1 2 ] The last few, together with the corresponding fountains of coins are: . 20: [ 1 2 1 1 2 1 1 ] . . O O . O O O O O O O . . . 21: [ 1 2 1 2 1 1 1 ] . . O O . O O O O O O O . . . 22: [ 1 2 1 2 1 2 ] . . O O O . O O O O O O . . . 23: [ 1 2 1 2 3 ] . . O . O O O . O O O O O . . . 24: [ 1 2 3 1 1 1 ] . . O . O O . O O O O O O . . . 25: [ 1 2 3 1 2 ] . . O . O O O . O O O O O (End) Applying recursion formula: 40 = a(10) = a(9) + a(7) + a(4) + a(0) = 25 + 11 + 3 + 1. - Gregory L. Simay, Jun 14 2016 MAPLE a:= proc(n) option remember; `if`(n=0, 1, add(`if`(issqr(8*j+1), a(n-j), 0), j=1..n)) end: seq(a(n), n=0..50); # Alois P. Heinz, Jul 31 2017 MATHEMATICA (1/(2 - QPochhammer[x^2]/QPochhammer[x, x^2]) + O[x]^30)[] (* Vladimir Reshetnikov, Sep 23 2016 *) a[n_] := a[n] = If[n == 0, 1, Sum[ If[ IntegerQ[ Sqrt[8j+1]], a[n-j], 0], {j, 1, n}]]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Jun 05 2018, after Alois P. Heinz *) PROG (PARI) N=66; x='x+O('x^N); Vec( 1/( 1 - sum(k=1, 1+sqrtint(2*N), x^binomial(k+1, 2) ) ) ) /* Joerg Arndt, Sep 30 2012 */ CROSSREFS Cf. A106332. Sequence in context: A333260 A196382 A120415 * A210518 A113435 A222022 Adjacent sequences: A023358 A023359 A023360 * A023362 A023363 A023364 KEYWORD nonn AUTHOR David W. Wilson, Jun 14 1998 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 7 22:58 EST 2023. Contains 360132 sequences. (Running on oeis4.)