The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A196382 Number of sequences of n coin flips, that win on the last flip, if the sequence of flips ends with (1,1,0) or (1,0,1). 1
 0, 0, 2, 3, 4, 7, 11, 16, 24, 36, 53, 78, 115, 169, 248, 364, 534, 783, 1148, 1683, 2467, 3616, 5300, 7768, 11385, 16686, 24455, 35841, 52528, 76984, 112826, 165355, 242340, 355167, 520523, 762864, 1118032, 1638556, 2401421, 3519454, 5158011 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS If the sequence ends with (1,1,0) Abel wins; if it ends with (1,0,1) Kain wins. Abel(n)=A077868(n-3); Kain(n)=A000930(n-3). Win probability for Abel=sum(Abel(n)/2^n)= 2/3. Win probability for Kain=sum(Kain(n)/2^n)= 1/3. Mean length of the game=sum(n*a(n)/2^n)= 6. REFERENCES A. Engel, Wahrscheinlichkeit und Statistik, Band 2, Klett, 1978, pages 25-26. LINKS G. C. Greubel, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (2,-1,1,-1). FORMULA a(n) = +2*a(n-1) -a(n-2) +a(n-3) -a(n-4), n>=5. G.f.: x^3*(2-x)/((1-x)*(1-x-x^3)). a(n) = 2*A077868(n-3) - A077868(n-4). - R. J. Mathar, Jan 11 2017 a(n) = a(n-1) + a(n-3) + 1, n>3. - Greg Dresden, Feb 09 2020 EXAMPLE For n=6 the a(6)=7 solutions are (0,0,0,1,1,0),(1,0,0,1,1,0),(0,0,1,1,1,0),(0,1,1,1,1,0),(1,1,1,1,1,0) for Abel and (0,0,0,1,0,1),(1,0,0,1,0,1) for Kain. MAPLE a(1):=0: a(2):=0: a(3):=2: a(4):=3: a(5):=4: for n from 6 to 100 do   a(n):=a(n-1)+a(n-2)-a(n-5): end do: seq(a(n), n=1..100); MATHEMATICA Rest[CoefficientList[Series[x^3*(2 - x)/((1 - x)*(1 - x - x^3)), {x, 0, 50}], x]] (* G. C. Greubel, May 02 2017 *) PROG (PARI) x='x+O('x^50); concat([0, 0], Vec(x^3*(2 - x)/((1 - x)*(1 - x - x^3)))) \\ G. C. Greubel, May 02 2017 CROSSREFS Cf. A000930, A077868, A179070 (first differences). Sequence in context: A125621 A141001 A333260 * A120415 A023361 A210518 Adjacent sequences:  A196379 A196380 A196381 * A196383 A196384 A196385 KEYWORD nonn,easy AUTHOR Paul Weisenhorn, Oct 28 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 27 11:04 EDT 2021. Contains 346304 sequences. (Running on oeis4.)