login
A120415
Expansion of 1/(1-x-x^3-x^6).
2
1, 1, 1, 2, 3, 4, 7, 11, 16, 25, 39, 59, 91, 141, 216, 332, 512, 787, 1210, 1863, 2866, 4408, 6783, 10436, 16054, 24700, 38002, 58464, 89947, 138385, 212903, 327550, 503937, 775304, 1192801, 1835123, 2823330, 4343681, 6682741, 10281375, 15817857, 24335721
OFFSET
0,4
COMMENTS
Number of compositions of n into parts 1, 3, and 6. [Joerg Arndt, Sep 03 2013]
LINKS
FORMULA
a(n) = a(n-1) + a(n-3) + a(n-6).
a(n) = Sum_{k=0..floor(n/2)} A157897(n-k, k). - G. C. Greubel, Sep 02 2022
MATHEMATICA
CoefficientList[Series[1/(1-x-x^3-x^6), {x, 0, 40}], x] (* Vincenzo Librandi, Sep 03 2013 *)
PROG
(Magma) I:=[1, 1, 1, 2, 3, 4]; [n le 6 select I[n] else Self(n-1)+Self(n-3)+Self(n-6): n in [1..40]]; // Vincenzo Librandi, Sep 03 2013
(SageMath)
def A120415_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( 1/(1-x-x^3-x^6) ).list()
A120415_list(40) # G. C. Greubel, Sep 02 2022
CROSSREFS
Cf. A157897.
Sequence in context: A141001 A333260 A196382 * A023361 A210518 A113435
KEYWORD
easy,nonn
AUTHOR
Jon E. Schoenfield, Aug 27 2006
STATUS
approved