OFFSET
1,2
COMMENTS
Longest non-intersecting route from (0, 0) to (n - 1, n - 1) staying in an (n - 1) X (n - 1) box (shortest route is length 2n A005843).
LINKS
Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).
FORMULA
From Colin Barker, Jul 29 2012: (Start)
a(n) = (-1 + (-1)^n + 4*n + 2*n^2)/2.
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4).
G.f.: 2*x*(1 + 2*x - x^2)/((1-x)^3*(1+x)). (End)
a(n) = n^2 - 2 for even n; a(n) = n^2 - 1 for odd n. -Dennis P. Walsh, Apr 15 2016
MAPLE
seq(2*ceil(n^2/2)-2, n=1..50);
MATHEMATICA
Flatten[Table[{(2n - 1)^2 - 1, 4n^2 - 2}, {n, 25}]] (* Alonso del Arte, Apr 15 2016 *)
PROG
(PARI) lista(nn) = for(n=0, nn, print1((-1+(-1)^n+4*n+2*n^2)/2, ", ")); \\ Altug Alkan, Apr 15 2016
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Henry Bottomley, Jul 06 2006
EXTENSIONS
Offset corrected by N. J. A. Sloane, Apr 15 2016
STATUS
approved