login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A120410
a(n) = n^1*(n+1)^2*(n+2)^3*(n+3)^4*(n+4)^5*(n+5)^6*(n+6)^7/(1!*2!*3!*4!*5!*6!*7!).
0
0, 26471025, 11014635520, 1306613597184, 72013536000000, 2320337450970000, 49989108969676800, 785820119347897920, 9577928124440387712, 94609025993497640625, 783056974947287040000, 5572874347584082739200, 34808179069805870776320, 193986366711798174329088
OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (29,-406,3654,-23751,118755,-475020,1560780,-4292145,10015005,-20030010,34597290,-51895935,67863915,-77558760, 77558760,-67863915,51895935,-34597290,20030010,-10015005,4292145,-1560780,475020,-118755,23751,-3654,406,-29,1).
FORMULA
Sum_{n>=1} 1/a(n) = 422971791896349857/972000000 - 845737633741*Pi^2/22500 - 230834541*Pi^4/500 - 58492*Pi^6/15 - 18320341039*zeta(3)/1800 - 15501934*zeta(5)/5 - 5040*zeta(7). - Amiram Eldar, Sep 08 2022
MAPLE
[seq(n^1*(n+1)^2*(n+2)^3*(n+3)^4*(n+4)^5*(n+5)^6*(n+6)^7/(1!*2!*3!*4!*5!*6!*7!), n=1..17)];
MATHEMATICA
Table[n*(n+1)^2*(n+2)^3*(n+3)^4*(n+4)^5*(n+5)^6*(n+6)^7/(1!*2!*3!*4!*5!*6!*7!), {n, 0, 10}] (* Amiram Eldar, Sep 08 2022 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Zerinvary Lajos, Jul 05 2006
EXTENSIONS
a(0) prepended by Amiram Eldar, Sep 08 2022
STATUS
approved