login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A090447
Triangle of partial products of binomials.
8
1, 1, 1, 1, 2, 2, 1, 3, 9, 9, 1, 4, 24, 96, 96, 1, 5, 50, 500, 2500, 2500, 1, 6, 90, 1800, 27000, 162000, 162000, 1, 7, 147, 5145, 180075, 3781575, 26471025, 26471025, 1, 8, 224, 12544, 878080, 49172480, 1376829440, 11014635520, 11014635520, 1, 9, 324
OFFSET
0,5
FORMULA
a(n, m) = Product_{p=0..m} binomial(n, p), n>=m>=0, else 0. Partial row products in Pascal's triangle A007318.
a(n, m) = (Product_{p=0..m} fallfac(n, m-p))/superfac(m), n>=m>=0, else 0; with fallfac(n, m) := A008279(n, m) (falling factorials) and superfac(m) = A000178(m) (superfactorials).
a(n, m) = (Product_{p=0..m} (n-p)^(m-p))/superfac(m), n>=m>=0, with 0^0:=0, else 0.
EXAMPLE
[1]; [1,1]; [1,2,2]; [1,3,9,9]; ...
MATHEMATICA
a[n_, m_] := Product[Binomial[n, p], {p, 0, m}]; Table[a[n, m], {n, 0, 10}, {m, 0, n}] // Flatten (* Jean-François Alcover, Sep 01 2016 *)
CROSSREFS
Column sequences: A000027 (natural numbers), A006002, A090448-9.
Cf. A090450 (row sums), A090451 (alternating row sums).
Cf. A008949 (partial row sums in Pascal's triangle).
Sequence in context: A136203 A113326 A262157 * A241186 A258222 A112324
KEYWORD
nonn,easy,tabl
AUTHOR
Wolfdieter Lang, Dec 23 2003
STATUS
approved