login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A258222
A(n,k) is the sum over all Dyck paths of semilength n of products over all peaks p of (k*x_p+y_p)/y_p, where x_p and y_p are the coordinates of peak p; square array A(n,k), n>=0, k>=0, read by antidiagonals.
5
1, 1, 1, 1, 2, 2, 1, 3, 10, 5, 1, 4, 24, 74, 14, 1, 5, 44, 297, 706, 42, 1, 6, 70, 764, 4896, 8162, 132, 1, 7, 102, 1565, 17924, 100278, 110410, 429, 1, 8, 140, 2790, 47650, 527844, 2450304, 1708394, 1430, 1, 9, 184, 4529, 104454, 1831250, 18685164, 69533397, 29752066, 4862
OFFSET
0,5
COMMENTS
A Dyck path of semilength n is a (x,y)-lattice path from (0,0) to (2n,0) that does not go below the x-axis and consists of steps U=(1,1) and D=(1,-1). A peak of a Dyck path is any lattice point visited between two consecutive steps UD.
LINKS
FORMULA
A(n,k) = Sum_{i=0..min(n,k)} C(k,i) * i! * A258223(n,i).
EXAMPLE
Square array A(n,k) begins:
: 1, 1, 1, 1, 1, 1, ...
: 1, 2, 3, 4, 5, 6, ...
: 2, 10, 24, 44, 70, 102, ...
: 5, 74, 297, 764, 1565, 2790, ...
: 14, 706, 4896, 17924, 47650, 104454, ...
: 42, 8162, 100278, 527844, 1831250, 4953222, ...
MAPLE
b:= proc(x, y, t, k) option remember; `if`(y>x or y<0, 0,
`if`(x=0, 1, b(x-1, y-1, false, k)*`if`(t, (k*x+y)/y, 1)
+ b(x-1, y+1, true, k) ))
end:
A:= (n, k)-> b(2*n, 0, false, k):
seq(seq(A(n, d-n), n=0..d), d=0..12);
MATHEMATICA
b[x_, y_, t_, k_] := b[x, y, t, k] = If[y > x || y < 0, 0, If[x == 0, 1, b[x - 1, y - 1, False, k]*If[t, (k*x + y)/y, 1] + b[x - 1, y + 1, True, k]]];
A [n_, k_] := b[2*n, 0, False, k];
Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Apr 23 2016, translated from Maple *)
CROSSREFS
Columns k=0-1 give: A000108, A000698(n+1).
Rows n=0-2 give: A000012, A000027(k+1), A049450(k+1).
Main diagonal gives A292694.
Sequence in context: A262157 A090447 A241186 * A112324 A061531 A368093
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, May 23 2015
STATUS
approved