The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A049450 Pentagonal numbers multiplied by 2: a(n) = n*(3*n-1). 48
 0, 2, 10, 24, 44, 70, 102, 140, 184, 234, 290, 352, 420, 494, 574, 660, 752, 850, 954, 1064, 1180, 1302, 1430, 1564, 1704, 1850, 2002, 2160, 2324, 2494, 2670, 2852, 3040, 3234, 3434, 3640, 3852, 4070, 4294, 4524, 4760, 5002, 5250, 5504, 5764 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS From Floor van Lamoen, Jul 21 2001: (Start) Write 1,2,3,4,... in a hexagonal spiral around 0, then a(n) is the sequence found by reading the line from 0 in the direction 0,2,.... The spiral begins: .                    56--55--54--53--52                    /                 \                  57  33--32--31--30  51                  /   /             \   \                58  34  16--15--14  29  50                /   /   /         \   \   \              59  35  17   5---4  13  28  49              /   /   /   /     \   \   \   \            60  36  18   6   0   3  12  27  48            /   /   /   /   / . /   /   /   /          61  37  19   7   1---2  11  26  47            \   \   \   \       . /   /   /            62  38  20   8---9--10  25  46              \   \   \           . /   /              63  39  21--22--23--24  45                \   \               . /                64  40--41--42--43--44                  \                   .                  65--66--67--68--69--70 (End) Starting with offset 1 = binomial transform of [2, 8, 6, 0, 0, 0, ...]. - Gary W. Adamson, Jan 09 2009 Number of possible pawn moves on an (n+1) X (n+1) chessboard (n=>3). - Johannes W. Meijer, Feb 04 2010 a(n) = A069905(6n-1): Number of partitions of 6*n-1 into 3 parts. - Adi Dani, Jun 04 2011 Even octagonal numbers divided by 4. - Omar E. Pol, Aug 19 2011 Partial sums give A011379. - Omar E. Pol, Jan 12 2013 First differences are A016933; second differences equal 6. - Bob Selcoe, Apr 02 2015 LINKS Ivan Panchenko, Table of n, a(n) for n = 0..1000 Richard P. Brent, Generalising Tuenter's binomial sums, arXiv:1407.3533 [math.CO], 2014. (page 16) Index entries for linear recurrences with constant coefficients, signature (3,-3,1). FORMULA O.g.f.: A(x) = 2*x*(1+2*x)/(1-x)^3. a(n) = A049452(n) - A033428(n). - Zerinvary Lajos, Jun 12 2007 a(n) = 2*A000326(n), twice pentagonal numbers. - Omar E. Pol, May 14 2008 a(n) = A022264(n) - A000217(n). - Reinhard Zumkeller, Oct 09 2008 a(n) = a(n-1) + 6*n - 4 (with a(0)=0). - Vincenzo Librandi, Aug 06 2010 a(n) = A014642(n)/4 = A033579(n)/2. - Omar E. Pol, Aug 19 2011 a(n) = A000290(n) + A000384(n) = A000217(n) + A000566(n). - Omar E. Pol, Jan 11 2013 a(n+1) = A014107(n+2) + A000290(n). - Philippe Deléham, Mar 30 2013 E.g.f.: x*(2 + 3*x)*exp(x). - Vincenzo Librandi, Apr 28 2016 a(n) = (2/3)*A000217(3*n-1). - Bruno Berselli, Feb 13 2017 a(n) = A002061(n) + A056220(n). - Bruce J. Nicholson, Sep 21 2017 EXAMPLE On a 4 X 4 chessboard pawns at the second row have (3+4+4+3) moves and pawns at the third row have (2+3+3+2) moves so a(3) = 24. - Johannes W. Meijer, Feb 04 2010 From Adi Dani, Jun 04 2011: (Start) a(1)=2: the partitions of 6*1-1=5 into 3 parts are [1,1,3] and[1,2,2]. a(2)=10: the partitions of 6*2-1=11 into 3 parts are [1,1,9], [1,2,8], [1,3,7], [1,4,6], [1,5,5], [2,2,7], [2,3,6], [2,4,5], [3,3,5], and [3,4,4]. (End) . .                                                         o .                                                       o o o .                                      o              o o o o o .                                    o o o          o o o o o o o .                       o          o o o o o      o o o o o o o o o .                     o o o      o o o o o o o    o o o o o o o o o .            o      o o o o o    o o o o o o o    o o o o o o o o o .          o o o    o o o o o    o o o o o o o    o o o o o o o o o .    o     o o o    o o o o o    o o o o o o o    o o o o o o o o o .    o     o o o    o o o o o    o o o o o o o    o o o o o o o o o .    2      10         24             44                 70 - Philippe Deléham, Mar 30 2013 MAPLE seq(n*(3*n-1), n=0..44); # Zerinvary Lajos, Jun 12 2007 MATHEMATICA Table[n(3n-1), {n, 0, 50}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 2, 10}, 50] (* Harvey P. Dale, Jun 21 2014 *) 2*PolygonalNumber[5, Range[0, 50]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 01 2018 *) PROG (PARI) a(n)=n*(3*n-1) \\ Charles R Greathouse IV, Nov 20 2012 (MAGMA) [n*(3*n-1) : n in [0..50]]; // Wesley Ivan Hurt, Sep 24 2017 (Sage) [n*(3*n-1) for n in (0..50)] # G. C. Greubel, Aug 31 2019 (GAP) List([0..50], n-> n*(3*n-1)); # G. C. Greubel, Aug 31 2019 CROSSREFS Cf. A000567. Bisection of A001859. Cf. A045944, A000326, A033579, A027599, A049451. Cf. A033586 (King), A035005 (Queen), A035006 (Rook), A035008 (Knight) and A002492 (Bishop). Cf. numbers of the form n*(n*k-k+4))/2 listed in A226488. [Bruno Berselli, Jun 10 2013] Cf. sequences listed in A254963. Sequence in context: A330280 A293412 A224837 * A092906 A244383 A295053 Adjacent sequences:  A049447 A049448 A049449 * A049451 A049452 A049453 KEYWORD nonn,easy,nice AUTHOR Joe Keane (jgk(AT)jgk.org). EXTENSIONS Comment, example and crossrefs added and minor errors corrected by Johannes W. Meijer, Feb 04 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 15 08:53 EDT 2020. Contains 336487 sequences. (Running on oeis4.)