This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A014107 a(n) = n*(2*n-3). 32
 0, -1, 2, 9, 20, 35, 54, 77, 104, 135, 170, 209, 252, 299, 350, 405, 464, 527, 594, 665, 740, 819, 902, 989, 1080, 1175, 1274, 1377, 1484, 1595, 1710, 1829, 1952, 2079, 2210, 2345, 2484, 2627, 2774, 2925, 3080, 3239, 3402, 3569, 3740, 3915, 4094, 4277 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Positive terms give a bisection of A000096. - Omar E. Pol, Dec 16 2016 LINKS G. C. Greubel, Table of n, a(n) for n = 0..5000 Emily Barnard, Nathan Reading, Coxeter-biCatalan combinatorics, arXiv:1605.03524 [math.CO], 2016. See p. 51. Index entries for linear recurrences with constant coefficients, signature (3,-3,1). FORMULA a(n) = A033537(n) - 8*n^2; A100035(a(n)) = 2 for n > 1. - Reinhard Zumkeller, Oct 31 2004 A014106(-n) = a(n). - Michael Somos, Nov 06 2005 G.f.: x*(-1 + 5*x)/(1 - x)^3. E.g.f: x*(-1 + 2*x)*exp(x). - Michael Somos, Nov 06 2005 a(n) = A097070(n)/A000108(n - 2), n >= 2 . - Philippe Deléham, Apr 12 2007 a(n) = 2*a(n-1) - a(n-2) + 4, n > 1. a(0) = 0, a(1) = -1, a(2) = 2. - Zerinvary Lajos, Feb 18 2008 a(n) = a(n-1) + 4*n - 5 with a(0) = 0. [Vincenzo Librandi, Nov 20 2010] a(n) = (2*n-1)*(n-1) - 1. Also, with an initial offset of -1, a(n) = (2*n-1)*(n+1) = 2*n^2 + n - 1. - Alonso del Arte, Dec 15 2012 (a(n) + 1)^2 + (a(n) + 2)^2 + ... + (a(n) + n)^2 = (a(n) + n + 1)^2 + (a(n) + n + 2)^2 + ... + (a(n) + 2n - 1)^2 starting with a(1) = -1. - Jeffreylee R. Snow, Sep 17 2013 MAPLE A014107:=n->n*(2*n-3); seq(A014107(n), n=0..100); # Wesley Ivan Hurt, Nov 19 2013 MATHEMATICA Table[2n^2 - 3n, {n, 0, 49}] (* Alonso del Arte, Dec 15 2012 *) LinearRecurrence[{3, -3, 1}, {0, -1, 2}, 50] (* Harvey P. Dale, Sep 18 2018 *) PROG (PARI) a(n)=n*(2*n-3) CROSSREFS Cf. A100036, A100037, A100038, A100039. a(n) = A100345(n, n - 3) for n > 2. Sequence in context: A007115 A154495 A248121 * A173102 A090398 A091941 Adjacent sequences:  A014104 A014105 A014106 * A014108 A014109 A014110 KEYWORD sign,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 12 17:59 EST 2019. Contains 329960 sequences. (Running on oeis4.)