login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A248121 Floor(1 / (1/n - Pi^2/6 + sum{1/h^2, h = 1..n})). 2
2, 9, 20, 34, 53, 76, 102, 133, 168, 206, 249, 296, 346, 401, 460, 522, 589, 660, 734, 813, 896, 982, 1073, 1168, 1266, 1369, 1476, 1586, 1701, 1820, 1942, 2069, 2200, 2334, 2473, 2616, 2762, 2913, 3068, 3226, 3389, 3556, 3726, 3901, 4080, 4262, 4449, 4640 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

It is well known that sum{1/h^2, h = 0..infinity} = Pi^2/6; this sequence provides insight into the manner of convergence.

REFERENCES

Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 20.

LINKS

Clark Kimberling, Table of n, a(n) for n = 1..1000

FORMULA

a(n) ~ 2*n^2. - Vaclav Kotesovec, Oct 09 2014

EXAMPLE

Let d(n) = Pi^2/6 - sum{1/(h^2}, h = 1..k}.  Approximations are shown here:

n ... 1/n .... d(n) ....... 1/n - d(n) ... a(n)

1 ... 1 ...... 0.644934 ... 0.355066 ..... 2

2 ... 0.5 .... 0.394934 ... 0.105066 ..... 9

3 ... 0.33 ... 0.283823 ... 0.04951 ...... 20

4 ... 0.25 ... 0.221323 ... 0.028677 ..... 34

MATHEMATICA

z = 200; p[k_] := p[k] = Sum[1/h^2, {h, 1, k}];

N[Table[Pi^2/6 - p[n], {n, 1, z/4}]]

f[n_] := f[n] = Select[Range[z], Pi^2/6 - p[#] < 1/n &, 1]

u = Flatten[Table[f[n], {n, 1, z}]]  (* A000027 *)

v = Floor[Table[1/(1/n - (Pi^2/6 - p[n])), {n, 1, z}]]  (* A248121 *)

CROSSREFS

Cf. A000027, A264938 (second conjecture).

Sequence in context: A042915 A007115 A154495 * A014107 A173102 A090398

Adjacent sequences:  A248118 A248119 A248120 * A248122 A248123 A248124

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, Oct 02 2014

EXTENSIONS

Typo in name corrected by Vaclav Kotesovec, Oct 09 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 18 18:20 EDT 2022. Contains 353823 sequences. (Running on oeis4.)