OFFSET
1,1
COMMENTS
It is well known that Sum_{h>=1} 1/h^2 = Pi^2/6; this sequence provides insight into the manner of convergence.
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 20.
LINKS
Clark Kimberling, Table of n, a(n) for n = 1..1000
FORMULA
a(n) ~ 2*n^2. - Vaclav Kotesovec, Oct 09 2014
Conjectures from Chai Wah Wu, Aug 03 2022: (Start)
a(n) = 2*a(n-1) - a(n-2) + a(n-3) - 2*a(n-4) + a(n-5) for n > 5.
G.f.: -x*(x + 1)^2*(x + 2)/((x - 1)^3*(x^2 + x + 1)). (End)
EXAMPLE
Let d(n) = Pi^2/6 - Sum_{h=1..n} 1/h^2. Approximations are shown here:
n ... 1/n .... d(n) ....... 1/n - d(n) ... a(n)
1 ... 1 ...... 0.644934 ... 0.355066 ..... 2
2 ... 0.5 .... 0.394934 ... 0.105066 ..... 9
3 ... 0.33 ... 0.283823 ... 0.04951 ...... 20
4 ... 0.25 ... 0.221323 ... 0.028677 ..... 34
MATHEMATICA
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Oct 02 2014
EXTENSIONS
Typo in name corrected by Vaclav Kotesovec, Oct 09 2014
STATUS
approved