The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A033579 Four times pentagonal numbers: a(n) = 2*n*(3*n-1). 24
 0, 4, 20, 48, 88, 140, 204, 280, 368, 468, 580, 704, 840, 988, 1148, 1320, 1504, 1700, 1908, 2128, 2360, 2604, 2860, 3128, 3408, 3700, 4004, 4320, 4648, 4988, 5340, 5704, 6080, 6468, 6868, 7280, 7704, 8140, 8588, 9048, 9520, 10004, 10500, 11008, 11528, 12060 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Subsequence of A062717: A010052(6*a(n)+1) = 1. - Reinhard Zumkeller, Feb 21 2011 Sequence found by reading the line from 0, in the direction 0, 4, ..., in the square spiral whose vertices are the generalized pentagonal numbers A001318. - Omar E. Pol, Sep 08 2011 LINKS Ivan Panchenko, Table of n, a(n) for n = 0..1000 Eric Weisstein's World of Mathematics, Pentagonal Number Wikipedia, Pentagonal number Index entries for linear recurrences with constant coefficients, signature (3,-3,1). FORMULA a(n) = 4*n*(3*n-1)/2 = 6*n^2 - 2*n = 4*A000326(n). - Omar E. Pol, Dec 11 2008 a(n) = 2*A049450(n). - Omar E. Pol, Dec 13 2008 a(n) = a(n-1) + 12*n - 8 for n > 0, a(0)=0. - Vincenzo Librandi, Aug 05 2010 a(n) = A014642(n)/2. - Omar E. Pol, Aug 19 2011 G.f.: x*(4+8*x)/(1-3*x+3*x^2-x^3). - Colin Barker, Jan 06 2012 a(n) = A191967(2*n). - Reinhard Zumkeller, Jul 07 2012 a(n) = A181617(n+1) - A181617(n). - J. M. Bergot, Jun 28 2013 a(n) = (A174371(n) - 1)/6. - Miquel Cerda, Jul 28 2016 From Ilya Gutkovskiy, Jul 28 2016: (Start) E.g.f.: 2*x*(2 + 3*x)*exp(x). a(n+1) = Sum_{k=0..n} A017569(k). Sum_{i>0} 1/a(i) = (9*log(3) - sqrt(3)*Pi)/12 = 0.3705093754425278... (End) MAPLE seq(4*binomial(3*n, 2)/3, n=0..45); # G. C. Greubel, Oct 09 2019 MATHEMATICA 4 PolygonalNumber[5, Range[0, 45]] (* Michael De Vlieger, Aug 02 2016, Version 10.4 *) PROG (PARI) a(n)=2*n*(3*n-1) \\ Charles R Greathouse IV, Jun 28 2013 (MAGMA) [4*Binomial(3*n, 2)/3: n in [0..45]]; // G. C. Greubel, Oct 09 2019 (Sage) [4*binomial(3*n, 2)/3 for n in (0..45)] # G. C. Greubel, Oct 09 2019 (GAP) List([0..45], n-> 4*Binomial(3*n, 2)/3 ); # G. C. Greubel, Oct 09 2019 CROSSREFS Cf. A000326, A001318, A014642, A033579, A033580, A033581, A049450, A186423. Sequence in context: A163365 A145194 A164924 * A294630 A160799 A187274 Adjacent sequences:  A033576 A033577 A033578 * A033580 A033581 A033582 KEYWORD nonn,easy AUTHOR EXTENSIONS More terms from Michel Marcus, Mar 04 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 19 19:30 EST 2020. Contains 332047 sequences. (Running on oeis4.)