OFFSET
0,2
COMMENTS
Sequence found by reading the line from 0, in the direction 0, 8,..., in the square spiral whose vertices are the generalized pentagonal numbers A001318. Opposite numbers to the members of A139267 in the same spiral - Omar E. Pol, Sep 09 2011
a(n) is the number of edges of the octagonal network O(n,n); O(m,n) is defined by Fig. 1 of the Siddiqui et al. reference. - Emeric Deutsch May 13 2018
The partial sums of this sequence give A035006. - Leo Tavares, Oct 03 2021
LINKS
Ivan Panchenko, Table of n, a(n) for n = 0..1000
M. K. Siddiqui, M. Naeem, N. A. Rahman, and M. Imran, Computing topological indices of certain networks, J. of Optoelectronics and Advanced Materials, 18, No. 9-10 (2016), pp. 884-892.
Leo Tavares, Illustration: Crossed Stars
Leo Tavares, Illustration: Four Quarter Star Crosses
Leo Tavares, Illustration: Triangulated Star Crosses
Leo Tavares, Illustration: Oblong Star Crosses
Leo Tavares, Illustration: Crossed Diamond Stars
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
FORMULA
a(n) = a(n-1) +12*n -4 (with a(0)=0). - Vincenzo Librandi, Aug 05 2010
G.f.: 4*x*(2+x)/(1-x)^3. - Colin Barker, Feb 13 2012
a(-n) = A033579(n). - Michael Somos, Jun 09 2014
E.g.f.: 2*x*(4 + 3*x)*exp(x). - G. C. Greubel, Oct 09 2019
From Amiram Eldar, Jan 14 2021: (Start)
Sum_{n>=1} 1/a(n) = 3/2 - Pi/(4*sqrt(3)) - 3*log(3)/4.
Sum_{n>=1} (-1)^(n+1)/a(n) = -3/2 + Pi/(2*sqrt(3)) + log(2). (End)
From Leo Tavares, Oct 12 2021: (Start)
a(n) = 4*A005449(n). See Four Quarter Star Crosses illustration.
a(n) = 2*A049451(n).
MAPLE
seq(2*n*(3*n+1), n=0..50); # G. C. Greubel, Oct 09 2019
MATHEMATICA
4*Binomial[3*Range[50]-2, 2]/3 (* G. C. Greubel, Oct 09 2019 *)
PROG
(PARI) a(n)=2*n*(3*n+1) \\ Charles R Greathouse IV, Sep 28 2015
(Magma) [2*n*(3*n+1): n in [0..50]]; // G. C. Greubel, Oct 09 2019
(Sage) [2*n*(3*n+1) for n in (0..50)] # G. C. Greubel, Oct 09 2019
(GAP) List([0..50], n-> 2*n*(3*n+1)); # G. C. Greubel, Oct 09 2019
KEYWORD
nonn,easy
AUTHOR
STATUS
approved