OFFSET
0,2
COMMENTS
Also:
a(n) - n = A022269(n);
a(n) + n = n*(11*n+5)/2: 0, 8, 27, 57, 98, 150, 213, 287, ...;
a(n) - 2*n = A022268(n);
a(n) + 2*n = n*(11*n+7)/2: 0, 9, 29, 60, 102, 155, 219, 294, ...;
a(n) - 3*n = n*(11*n-3)/2: 0, 4, 19, 45, 82, 130, 189, 259, ...;
a(n) + 3*n = A211013(n);
a(n) - 4*n = A226492(n);
a(n) + 4*n = A152740(n);
a(n) - 5*n = A180223(n);
a(n) + 5*n = n*(11*n+13)/2: 0, 12, 35, 69, 114, 170, 237, 315, ...;
a(n) - 6*n = A051865(n);
a(n) + 6*n = n*(11*n+15)/2: 0, 13, 37, 72, 118, 175, 243, 322, ...;
a(n) + 7*n = n*(11*n+17)/2: 0, 14, 39, 75, 122, 180, 249, 329, ...;
a(n) - n*(n-1)/2 = A168668(n);
a(n) + n*(n-1)/2 = A049453(n);
a(n) - n*(n+1)/2 = A202803(n);
a(n) + n*(n+1)/2 = A033580(n).
LINKS
Bruno Berselli, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
FORMULA
G.f.: x*(7 + 4*x)/(1 - x)^3.
MATHEMATICA
Table[n (11 n + 3)/2, {n, 0, 50}]
LinearRecurrence[{3, -3, 1}, {0, 7, 25}, 50] (* Harvey P. Dale, Mar 25 2018 *)
PROG
(PARI) vector(50, n, n--; n*(11*n+3)/2)
(Sage) [n*(11*n+3)/2 for n in (0..50)]
(Magma) [n*(11*n+3)/2: n in [0..50]];
(Maxima) makelist(n*(11*n+3)/2, n, 0, 50);
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Feb 11 2015
STATUS
approved