|
|
A051865
|
|
13-gonal (or tridecagonal) numbers: a(n) = n*(11*n - 9)/2.
|
|
34
|
|
|
0, 1, 13, 36, 70, 115, 171, 238, 316, 405, 505, 616, 738, 871, 1015, 1170, 1336, 1513, 1701, 1900, 2110, 2331, 2563, 2806, 3060, 3325, 3601, 3888, 4186, 4495, 4815, 5146, 5488, 5841, 6205, 6580, 6966, 7363, 7771, 8190, 8620, 9061, 9513
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
Sequence found by reading the line from 0, in the direction 0, 13, ... and the parallel line from 1, in the direction 1, 36, ..., in the square spiral whose vertices are the generalized 13-gonal numbers A195313. - Omar E. Pol, Jul 18 2012
|
|
REFERENCES
|
Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, p. 189.
E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 6.
|
|
LINKS
|
T. D. Noe, Table of n, a(n) for n = 0..1000
Index to sequences related to polygonal numbers
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
|
|
FORMULA
|
a(n) = 11*n + a(n-1) - 10 with n > 0, a(0) = 0. - Vincenzo Librandi, Aug 06 2010
G.f.: x*(1+10*x)/(1-x)^3. - Bruno Berselli, Feb 04 2011
a(11*a(n) + 56*n + 1) = a(11*a(n) + 56*n) + a(11*n+1). - Vladimir Shevelev, Jan 24 2014
Product_{n>=2} (1 - 1/a(n)) = 11/13. - Amiram Eldar, Jan 21 2021
|
|
MATHEMATICA
|
CoefficientList[Series[x (1 + 10 x) / (1 - x)^3, {x, 0, 40}], x] (* Vincenzo Librandi, Jun 19 2013 *)
LinearRecurrence[{3, -3, 1}, {0, 1, 13}, 50] (* Harvey P. Dale, Jul 12 2014 *)
Table[n*(11*n - 9)/2, {n, 0, 100}] (* Robert Price, Oct 11 2018 *)
|
|
PROG
|
(PARI) a(n)=(11*n^2-9*n)/2 \\ Charles R Greathouse IV, May 27 2011
|
|
CROSSREFS
|
Sequence in context: A034119 A054285 A101103 * A081928 A034129 A243038
Adjacent sequences: A051862 A051863 A051864 * A051866 A051867 A051868
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
N. J. A. Sloane, Dec 15 1999
|
|
STATUS
|
approved
|
|
|
|