OFFSET
1,2
COMMENTS
For more information, cross-references etc., see A101104.
For n >= 3, a(n) is equal to the number of functions f:{1,2,3,4}->{1,2,...,n} such that Im(f) contains 3 fixed elements. - Aleksandar M. Janjic and Milan Janjic, Mar 08 2007
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..5000
Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets.
Claudio de J. Pita Ruiz V., Some Number Arrays Related to Pascal and Lucas Triangles, J. Int. Seq., Vol. 16 (2013) , Article 13.5.7.
Index entries for linear recurrences with constant coefficients, signature (2,-1).
FORMULA
a(n) = 2*a(n-1) - a(n-2), n > 4.
G.f.: x*(1+x)*(1 + 10*x + x^2)/(1-x)^2.
a(n) = 24*n - 36, n >= 3.
a(n) = Sum_{j=0..n} (-1)^j*binomial(3, j)*(n - j)^4. [Indices shifted, Nov 01 2010]
a(n) = Sum_{i=1..4} A008292(4,i)*binomial(n-i+1,1). [Indices shifted, Nov 01 2010]
Sum_{n>=1} (-1)^(n+1)/a(n) = 157/156 - Pi/48. - Amiram Eldar, Jan 26 2022
MAPLE
seq(coeff(series(x*(1+x)*(1+10*x+x^2)/(1-x)^2, x, n+1), x, n), n = 1 .. 60); # Muniru A Asiru, Dec 02 2018
MATHEMATICA
MagicNKZ=Sum[(-1)^j*Binomial[n+1-z, j]*(k-j+1)^n, {j, 0, k+1}]; Table[MagicNKZ, {n, 4, 4}, {z, 2, 2}, {k, 0, 34}] OR SeriesAtLevelR = Sum[Eulerian[n, i - 1]*Binomial[n + x - i + r, n + r], {i, 1, n}]; Table[SeriesAtLevelR, {n, 4, 4}, {r, -3, -3}, {x, 3, 35}]
Join[{1, 13}, LinearRecurrence[{2, -1}, {36, 60}, 33]] (* Ray Chandler, Sep 23 2015 *)
PROG
(PARI) my(x='x+O('x^60)); Vec(x*(1+x)*(1+10*x+x^2)/(1-x)^2) \\ G. C. Greubel, Dec 01 2018
(Magma) I:=[36, 60]; [1, 13] cat [n le 2 select I[n] else 2*Self(n-1) - Self(n-2): n in [1..30]]; // G. C. Greubel, Dec 01 2018
(Sage) s=(x*(1+x)*(1+10*x+x^2)/(1-x)^2).series(x, 30); s.coefficients(x, sparse=False) # G. C. Greubel, Dec 01 2018
(GAP) Concatenation([1, 13], List([3..60], n->24*n-36)); # Muniru A Asiru, Dec 02 2018
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Cecilia Rossiter (cecilia(AT)noticingnumbers.net), Dec 15 2004
EXTENSIONS
Removed redundant information already in A101104. Reduced formulas by expansion of constants - R. J. Mathar, Nov 01 2010
STATUS
approved