login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A101102 Fifth partial sums of cubes (A000578). 15
1, 13, 82, 354, 1200, 3432, 8646, 19734, 41613, 82225, 153868, 274924, 472056, 782952, 1259700, 1972884, 3016497, 4513773, 6624046, 9550750, 13550680, 18944640, 26129610, 35592570, 47926125, 63846081, 84211128, 110044792, 142559824, 183185200, 233595912 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Colin Barker, Table of n, a(n) for n = 1..1000

C. Rossiter, Depictions, Explorations and Formulas of the Euler/Pascal Cube.

Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).

FORMULA

a(n) = n*(n+1)*(n+2)*(n+3)*(n+4)*(n+5)*(10 + 3*n*(n+5))/20160.

This sequence could be obtained from the general formula a(n) = n*(n+1)*(n+2)*(n+3)*...*(n+k)*(n*(n+k) + (k-1)*k/6)/((k+3)!/6) at k=5. - Alexander R. Povolotsky, May 17 2008

G.f.: -x*(x^2+4*x+1) / (x-1)^9. - Colin Barker, Apr 23 2015

MATHEMATICA

s1=s2=s3=s4=s5=0; lst={}; Do[s1+=n^3; s2+=s1; s3+=s2; s4+=s3; s5+=s4; AppendTo[lst, s5], {n, 0, 6!}]; lst (* Vladimir Joseph Stephan Orlovsky, Jan 15 2009 *)

PROG

(PARI) a(n)=sum(t=1, n, sum(s=1, t, sum(l=1, s, sum(j=1, l, sum(m=1, j, sum(i=m*(m+1)/2-m+1, m*(m+1)/2, (2*i-1))))))) \\ Alexander R. Povolotsky, May 17 2008

(PARI) Vec(-x*(x^2+4*x+1)/(x-1)^9 + O(x^100)) \\ Colin Barker, Apr 23 2015

(PARI) a(n) = binomial(n+5, 6)*(3*n^2+15*n+10)/28 \\ Charles R Greathouse IV, Apr 23 2015

CROSSREFS

Cf. A000537, A024166, A101094. Partial sums of A101097.

Sequence in context: A241696 A052255 A082203 * A213572 A142085 A163688

Adjacent sequences:  A101099 A101100 A101101 * A101103 A101104 A101105

KEYWORD

easy,nonn

AUTHOR

Cecilia Rossiter (cecilia(AT)noticingnumbers.net), Dec 15 2004

EXTENSIONS

Edited by Ralf Stephan, Dec 16 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 22 07:43 EST 2018. Contains 299447 sequences. (Running on oeis4.)