login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A180223
a(n) = (11*n^2 - 7*n)/2.
9
0, 2, 15, 39, 74, 120, 177, 245, 324, 414, 515, 627, 750, 884, 1029, 1185, 1352, 1530, 1719, 1919, 2130, 2352, 2585, 2829, 3084, 3350, 3627, 3915, 4214, 4524, 4845, 5177, 5520, 5874, 6239, 6615, 7002, 7400, 7809, 8229, 8660
OFFSET
0,2
COMMENTS
This sequence is related to A050441 by n*a(n) - Sum_{i=0..n-1} a(i) = 2*A050441(n). - Bruno Berselli, Aug 19 2010
Sum of n-th heptagonal number (A000566) and n-th octagonal number (A000567). - Bruno Berselli, Jun 11 2013
Create a triangle with T(r,1) = r^2 and T(r,c) = r^2 + r*c + c^2. The difference of the sum of the terms in row n and those in row n-1 is a(n). - J. M. Bergot, Jun 17 2013
LINKS
B. Berselli, A description of the recursive method in Comments lines: website Matem@ticamente (in Italian).
FORMULA
G.f.: x*(2+9*x)/(1-x)^3. - Bruno Berselli, Aug 19 2010 - corrected in Apr 18 2011
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) with n>2. - Bruno Berselli, Aug 19 2010
a(n) = n + A226492(n). - Bruno Berselli, Jun 11 2013
E.g.f.: x*(4 + 11*x)*exp(x)/2. - G. C. Greubel, Aug 24 2015
MAPLE
A180223:=n->(11*n^2 - 7*n)/2; seq(A180223(n), n=0..30); # Wesley Ivan Hurt, Feb 25 2014
MATHEMATICA
Table[(11*n^2 - 7*n)/2, {n, 0, 30}] (* Wesley Ivan Hurt, Feb 25 2014 *)
LinearRecurrence[{3, -3, 1}, {0, 2, 15}, 50] (* Harvey P. Dale, Oct 10 2020 *)
PROG
(PARI) a(n)=1/2*(11*n^2 - 7*n);
(Magma) [(11*n^2 - 7*n)/2: n in [0..30]]; // Vincenzo Librandi, Apr 18 2011
(Sage) [n*(11*n-7)/2 for n in (0..30)] # G. C. Greubel, Sep 18 2019
(GAP) List([0..30], n-> n*(11*n-7)/2); # G. C. Greubel, Sep 18 2019
CROSSREFS
Cf. numbers of the form n*(n*k-k+4)/2 listed in A226488 (this sequence is the case k=11). - Bruno Berselli, Jun 10 2013
Sequence in context: A007217 A295367 A214541 * A070009 A070170 A033568
KEYWORD
nonn,easy
AUTHOR
Graziano Aglietti (mg5055(AT)mclink.it), Aug 16 2010
STATUS
approved